Пусть было сделано n обменных операций 1-го типа и k операций 2-го типа (по порядку как они шли в условии). Тогда количество золотых монет в результате изменится на величину -4n+5k=0 т.к. их общее количество не изменилось, а при каждой операции 1-го типа золотых уменьшается на 4, и 2-го типа количество золотых увеличивается на 5. На операции каждого типа количество медных монет увеличивается на 1, значит всего было сделано 45 операций, т.е. n+k=45. Отсюда n=45-k, -4(45-k)+5k=0, k=20, n=25. Аналогично, как с золотыми, количество серебряных изменится на величину 5n-8k=5*25-8*20=125-160=-35. Т.е. количество серебряных монет уменьшилось на 35.
Раскрываем скобки. Для этого значение перед скобками, умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. Тогда получаем:
- 6 + 1,2 * у + 5,6 = 1,2 * у + 0,4;
- 0,4 + 1,2 * у = 1,2 * у + 0,4;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
1,2 * у - 1,2 * y = 0,4 + 0,4;
0 * y = 0,8;
Уравнение не имеет корней, так как на ноль делить нельзя.
-3(2-0,4у)+5,6=0,4(3у+1)
ответ или решение1
- 3 * (2 - 0,4 * у) + 5,6 = 0,4 * (3 * у + 1);
Раскрываем скобки. Для этого значение перед скобками, умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. Тогда получаем:
- 6 + 1,2 * у + 5,6 = 1,2 * у + 0,4;
- 0,4 + 1,2 * у = 1,2 * у + 0,4;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
1,2 * у - 1,2 * y = 0,4 + 0,4;
0 * y = 0,8;
Уравнение не имеет корней, так как на ноль делить нельзя.