Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
В решении.
Объяснение:
Составьте математическую модель задачи и решите ее:
Катер 30 км против течения реки и 12 км по течению за то же время, за которое он может пройти по озеру 44 км. Определите скорость катера по озеру, если скорость течения реки составляет 2 км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость катера (по озеру).
х + 2 - скорость катера по течению.
х - 2 - скорость катера против течения.
44/х - время катера по озеру.
12/(х + 2) - время катера по течению.
30/(х - 2) - время катера против течения.
По условию задачи уравнение (математическая модель):
12/(х + 2) + 30/(х - 2) = 44/х
Умножить все части уравнения на х(х - 2)(х + 2), чтобы избавиться от дробного выражения:
12*х(х - 2) + 30*х(х + 2) = 44*(х² - 4)
12х² - 24х + 30х² + 60х = 44х² - 176
42х² - 44х² + 36х + 176 = 0
-2х² + 36х + 176 = 0/-2
х² - 18х - 88 = 0, квадратное уравнение, ищем корни:
D=b²-4ac =324 + 352 = 676 √D=26
х₁=(-b-√D)/2a
х₁=(18-26)/2
х₁= -8/2 = -4, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(18+26)/2
х₂=44/2
х₂=22 (км/час) - скорость катера по озеру.
Проверка:
30/20 + 12/24 = 1,5 + 0,5 = 2 (часа);
44/22 = 2 (часа);
2 = 2, верно.
Чтобы разложить квадратный трёхчлен на множители, надо найти его корни, приравняв нулю. Т.е. ищем корни уравнения 3x² - 11x + 6 = 0.
Корни можно искать как обычно через дискриминант. Они будут равны:
x1 = 3; x2 = 2/3
Разложение будет выглядеть следующим образом: (x - 3)*(x - 2/3).
НО! Надо ещё учесть коэффициент, который стоит перед x², у нас он равен 3. Так вот, полученное разложение надо умножить на этот коэффициент!
Окончательно разложение будет выглядеть так:
3*(x - 3)*(x - 2/3) = (x - 3)*(3x - 2)
Общее правило для уравнений вида
a x² + b x + c
которые имеют корни x1 и x2, можно разложить по формуле
a * (x - x1) * (x - x2)
Что мы и сделали.
Проверяем
(x - 3)*(3x - 2) = 3x² - 2x - 9x + 6 = 3x² - 11x + 6
Объяснение:
Надеюсь понятно?