Для бесконечно малой arctg(3*x) эквивалентной бесконечной малой является бесконечно малая 3*x. Для доказательства используем правило Лопиталя: [arctg(3*x)]'=3/(1+9*x²), (3*x)'=3, так что [arctg(3*x)]'/(3*x)'=3/[3*(1+9*x²)]=1/(1+9*x²), и при x⇒0 [arctg(3*x)]'/(3*x)'⇒1. Заменяя теперь arctg(3*x) на 3*x, получаем выражение 3*x/(5*x-2*x²). Сократив числитель и знаменатель на x, приходим к выражению 3/(5-2*x). Его предел при x⇒0 равен 3/(5-2*0)=3/5.
ответ: 3/5.
Объяснение:
Для бесконечно малой arctg(3*x) эквивалентной бесконечной малой является бесконечно малая 3*x. Для доказательства используем правило Лопиталя: [arctg(3*x)]'=3/(1+9*x²), (3*x)'=3, так что [arctg(3*x)]'/(3*x)'=3/[3*(1+9*x²)]=1/(1+9*x²), и при x⇒0 [arctg(3*x)]'/(3*x)'⇒1. Заменяя теперь arctg(3*x) на 3*x, получаем выражение 3*x/(5*x-2*x²). Сократив числитель и знаменатель на x, приходим к выражению 3/(5-2*x). Его предел при x⇒0 равен 3/(5-2*0)=3/5.