Используя единичную окружность, линии тангенсов и котангенсов, докажите, что для любых чисел t1 и t2 из неравенства t1 < t2: следует неравенство: 1) arctgt1 < arctgt1 2) arcctgt1 < arcctgt2
Для поиска и отсеивание экстремумов приравняем производную к нулю:
Мы нашли 2 точки возможного экстремума. Проверим, действительно ли они являются точками экстремума. Для этого возьмём по точке в окрестностях этих, и подставим в g(x), чтобы определить знак производной.
1) Подставим в g(x) точку -1, которая < 0:
Так как g(-1) < 0, то функция в окрестности точки -1 спадает;
2) Подставим в g(x) точку 0.5, которая лежит между 0 и 3/4:
Так как g(0.5) < 0, то функция в окрестности 0.5 спадает;
3) Подставим в g(x) точку 1, которая > 3/4:
Так как g(1) >0, то функция в окрестности точки 1 возрастает.
Имеем:
На промежутке хє(-∞;0) функция спадает; хє(0;3/4) – функция спадает; хє(3/4;+∞) – функция возрастает. Значит у данной функции существует единственная точка экстремума – 3/4.
Но так как в окрестности точки 3/4 функция производная функции меняет свой знак с "-" на "+", то эта точка является локальным минимумом функции. Тогда локальный максимум функции – 0.
22985 руб.
Объяснение:
полное условие задания во вложении
Печь "Кентавр " стоит 23000 руб.,
найдем стоимость печи со скидкой 3 % , она будет
100-3 = 97% от первоначальной цены
97% = 97 : 100= 0,97
Стоимость печи сос кидкой будет :
23000 *0,97 = 22310 руб.
Стоимость доставки - 900 руб. и это 100% стоимости доставки .
Стоимость доставки со скидкой 25 % составит
100-25 = 75 % от первоначальной стоимости доставки
75 % = 75 : 100=0,75
900 *0,75 = 675 руб. будет стоимость доставки со скидкой
Покупка печи с доставкой будет стоить
22310 + 675 = 22985 руб.
Дана функция:
Найдём её производную ( f'(x) = g(x) ):
Для поиска и отсеивание экстремумов приравняем производную к нулю:
Мы нашли 2 точки возможного экстремума. Проверим, действительно ли они являются точками экстремума. Для этого возьмём по точке в окрестностях этих, и подставим в g(x), чтобы определить знак производной.
1) Подставим в g(x) точку -1, которая < 0:
Так как g(-1) < 0, то функция в окрестности точки -1 спадает;
2) Подставим в g(x) точку 0.5, которая лежит между 0 и 3/4:
Так как g(0.5) < 0, то функция в окрестности 0.5 спадает;
3) Подставим в g(x) точку 1, которая > 3/4:
Так как g(1) >0, то функция в окрестности точки 1 возрастает.
Имеем:
На промежутке хє(-∞;0) функция спадает; хє(0;3/4) – функция спадает; хє(3/4;+∞) – функция возрастает. Значит у данной функции существует единственная точка экстремума – 3/4.
Но так как в окрестности точки 3/4 функция производная функции меняет свой знак с "-" на "+", то эта точка является локальным минимумом функции. Тогда локальный максимум функции – 0.
Это и есть ответ.