Принцип решения №2: Пусть нужно заказать Х труб по 5м и У труб по 6м, тогда, согласно условию, х+у=30 труб (первое уравнение). Следовательно из труб по 5м мы проложим 5Хм водопровода, а из труб по 6м - 6Ум, что по условию составляет 426м. Составим и решим систему уравнений: (1) х+у=30 (2) 5х+6у=426
Ну а дольше просто решаем систему и получаем ответ. Если не хотите использовать 2 переменных, то сразу выражайте кол-во одних труб, через ко-во других, т.е. если по 5м - Хтруб, то по 6м - (30-х)труб.
Поскольку необходимо представить число 68 в виде суммы двух чисел, то пусть первое число х, тогда второе число (68-х). Тогда сумма квадратов слагаемых будет равна: х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя 1) с производной (2х²-136х+4624)'=4x-136 4x-136=0 4x=136 x=136:4 х=34 Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика y=2х²-136х+4624 Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы. х₀=-b/2a=-(-136)/4=34
Принцип решения №2:
Пусть нужно заказать Х труб по 5м и У труб по 6м, тогда, согласно условию, х+у=30 труб (первое уравнение). Следовательно из труб по 5м мы проложим 5Хм водопровода, а из труб по 6м - 6Ум, что по условию составляет 426м. Составим и решим систему уравнений:
(1) х+у=30
(2) 5х+6у=426
Ну а дольше просто решаем систему и получаем ответ.
Если не хотите использовать 2 переменных, то сразу выражайте кол-во одних труб, через ко-во других, т.е. если по 5м - Хтруб, то по 6м - (30-х)труб.
Тогда сумма квадратов слагаемых будет равна:
х²+(68-х)²=х²+68²-2*68*х+х²=2х²-136х+4624
Здесь можно найти минимальное значение 2-мя
1) с производной
(2х²-136х+4624)'=4x-136
4x-136=0
4x=136
x=136:4
х=34
Значит будет 2 одинаковых положительных числа 34 и 34.
2) с графика
y=2х²-136х+4624
Это парабола - ветви направлены вверх. Значит наименьшее значение будет в вершине параболы.
х₀=-b/2a=-(-136)/4=34
34+34=68