Я так понял, что вся соль - решить задачу без применения тригонометрии.
Прежде всего, заметим, что расстояние между AD и ВС равно половине стороны ромба а (проводим высоту из точки D на ВС и вспоминаем про угол 30 градусов, высота ромба a/2). Отсюда расстояние от М до стороны ромба (любой) равно а/4; пусть МК перпендикулярно AD, AD = a; МК = a/4; MC = корень(2 + корень(3))/2 = m; MD = x; из подобия МКD и MDC имеем
Начнем с того, что с применением тригонометрии эта задача решается элементарно. Если М - точка пересечения диагоналей, то MD = MC*tg(15);
Sacd = AC*MD/2 = (2+корень(3))*tg(15)/(2*2) = (2+корень(3))*(1 - cos(30))/(4*sin(30));
Sacd = (1 + корень(3)/2)*(1 - корень(3)/2) = (1 - 3/4) = 1/4;
Я так понял, что вся соль - решить задачу без применения тригонометрии.
Прежде всего, заметим, что расстояние между AD и ВС равно половине стороны ромба а (проводим высоту из точки D на ВС и вспоминаем про угол 30 градусов, высота ромба a/2). Отсюда расстояние от М до стороны ромба (любой) равно а/4; пусть МК перпендикулярно AD, AD = a; МК = a/4; MC = корень(2 + корень(3))/2 = m; MD = x; из подобия МКD и MDC имеем
m/a = a/(4*x); 4*x*m = a^2; но a^2 = m^2 + x^2;
4*x*m = m^2 + x^2; (x/m)^2 - 4*(x/m) + 1 = 0;
оставляем корень, при котором x/m < 1;
x = m*(2 - корень(3));
S = m^2*(2 - корень(3)) = (1/4)*(2 + корень(3))*(2 - корень(3)) = 1/4
3.. мы знаем, что в десятичных дробях мы можем поставить в конце нуль, много нулей и значение все равно не изменится
если тебе будет проще, то составь координатную прямую
>
-1.3 -1.2 0
а) -1,15
давайте -1.3 и -1.2 запишем как -1.30 и -1.20
>
-1.30 -1.20 -1.15
не подходит
б) -1.25
снова представляем числа в условии с двумя знаками после запятой
это число заключено между числами из условия
в) -1,4
не включено
г) -1.263
представим числа из условия таким образом -1.300 и -1.200
число подходит
4. давайте попробуем опять воспользоваться координатной прямой
>
-900 -800
помним, что чем больше модуль отрицательного числа (число просто, без минуса), тем оно левее, меньше
-839 должно быть больше -900 и при этом меньше -800
на координатной прямой это выглядит примерно так
>
-900 -839 -800
так что, неравенство верно
5. знаки ≥ и ≤ обозначают (больше или равно/меньше или равно) у нас в условии нет того, что числа равны, так что первое и последнее сразу не подходит
"а" находится между 3.5 и 4.6
букву ставим в середину неравенства и получается
3.5<а<4.6
знаки неравенства направлены в сторону "а" , можно увидеть, что первый знак обозначает что а больше 3.5 , а второй что а меньше 4.6
значит, ответ третий