А) В данном прямоугольном треугольнике два угла равны по 45°, значит треугольник равнобедренный; пусть а - катеты, тогда гипотенуза равна а√2 (можно найти по т. Пифагора); синус угла - это отношение противолежащего катета к гипотенузе, поэтому sin 45°=а/(а√2)=1/√2=2/√2. б) π/4=45°, треугольник равнобедренный; пусть а - катеты, тогда гипотенуза равна а√2, косинус угла - это отношение прилежащего катета к гипотенузе, поэтому cos π/4=а/(а√2)=1/√2=√2/2. в) sin π/6=sin 30°. Свойство: в прямоугольном треугольнике катет, который лежит напротив угла 30°, равен половине гипотенузы. Пусть катет, лежащий напротив угла в 30°, равен а, тогда гипотенуза равна 2а. Синус угла - отношение противолежащего угла к гипотенузе, поэтому sin π/6=a/(2a)=1/2. г) cos 30°. Рассуждение аналогично примеру в). Пусть а - катет, противолежащий углу 30°, гипотенуза равна 2а, по т.Пифагора катет, прилежащий углу 30° равен а√3. Косинус угла - отношение прилежащего катета к гипотенузе, поэтому cos 30°=а√3/(2а)=√3/2. д) sin 60°. Второй угол равен 30°. Пусть а - катет, противолежащий углу 30°, гипотенуза равна 2а, второй катет равен а√3. sin 60°=a√3/(2a)=√3/2. е) cos π/3=60°. Второй угол равен 30°. Пусть а - катет, противолежащий углу 30°, гипотенуза равна 2а. cos π/3=a/(2a)=1/2.
Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
б) π/4=45°, треугольник равнобедренный; пусть а - катеты, тогда гипотенуза равна а√2, косинус угла - это отношение прилежащего катета к гипотенузе, поэтому cos π/4=а/(а√2)=1/√2=√2/2.
в) sin π/6=sin 30°. Свойство: в прямоугольном треугольнике катет, который лежит напротив угла 30°, равен половине гипотенузы. Пусть катет, лежащий напротив угла в 30°, равен а, тогда гипотенуза равна 2а. Синус угла - отношение противолежащего угла к гипотенузе, поэтому sin π/6=a/(2a)=1/2.
г) cos 30°. Рассуждение аналогично примеру в). Пусть а - катет, противолежащий углу 30°, гипотенуза равна 2а, по т.Пифагора катет, прилежащий углу 30° равен а√3. Косинус угла - отношение прилежащего катета к гипотенузе, поэтому cos 30°=а√3/(2а)=√3/2.
д) sin 60°. Второй угол равен 30°. Пусть а - катет, противолежащий углу 30°, гипотенуза равна 2а, второй катет равен а√3. sin 60°=a√3/(2a)=√3/2.
е) cos π/3=60°. Второй угол равен 30°. Пусть а - катет, противолежащий углу 30°, гипотенуза равна 2а. cos π/3=a/(2a)=1/2.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше