Рассмотрим первое условие. Обозначим весь путь АВ = 2S , время второго поезда до встречи на половине АВ через t час, тогда время первого ( t+2) час. S/t - скорость второго поезда, S/(t+2)- скорость первого.
Рассмотрим второе условие: 2· S/t - путь пройденный вторым за 2 часа, 2· S/(t+2) - путь, пройденный первым за два часа. По второму условию через два часа расстояние будет равно 1/4 от 2S. Сумма этих трех расстояний равна АВ=2· S
Составляем уравнение:
2· S/t + 2 · S/(t+2) + 2S/4= 2S На S можно сократить, получим уравнение относительно переменной t:
3t²-2t-8=0 D=(-2)²-4·3(-8)=100 t=(2+10)/6=2 второй корень отрицательный.
За два часа второй поезд проходит половину пути, а первый идет на 2 часа больше, то есть 4 часа. Весь путь ( в два раза больштй) второй поезд пройдет за 4 часа, а второй поезд за 8 часов.
Обозначим весь путь АВ = 2S , время второго поезда до встречи на половине АВ через t час, тогда время первого ( t+2) час.
S/t - скорость второго поезда, S/(t+2)- скорость первого.
Рассмотрим второе условие:
2· S/t - путь пройденный вторым за 2 часа, 2· S/(t+2) - путь, пройденный первым за два часа. По второму условию через два часа расстояние будет равно 1/4 от 2S.
Сумма этих трех расстояний равна АВ=2· S
Составляем уравнение:
2· S/t + 2 · S/(t+2) + 2S/4= 2S
На S можно сократить, получим уравнение относительно переменной t:
3t²-2t-8=0
D=(-2)²-4·3(-8)=100
t=(2+10)/6=2 второй корень отрицательный.
За два часа второй поезд проходит половину пути, а первый идет на 2 часа больше, то есть 4 часа. Весь путь ( в два раза больштй) второй поезд пройдет за 4 часа, а второй поезд за 8 часов.
Заменим (x - 3)/(x + 2) на a
Тогда уравнение принимает следующий вид:
a² - 15 = 16 · 1/a²
[Пояснение: если мы делим единицу на какую-то дробь, то мы, фактически, "переворачиваем" ее. Можешь сам проверить на листочке]
a² - 15 - 16/a² = 0 l · a² (умножаем все уравнение на a²)
a⁴ - 15a² - 16 = 0
для простоты понимания, заменим a² на z
z² - 15z - 16 = 0
Далее находим корни через дискриминант
D = b² - 4ac
D = 225 - 4 · (-16) = 225 + 64 = 289 = 17²
z₁ = (15 + 17)/2 = 32/2 = 16
z₂ = (15 - 17)/2 = -2/2 = -1
Отлично, теперь производим обратную замену.
a² = 16 ; a = ±4
a² = -1 (не подходит)
[ (x - 3)/(x + 2) = 4
[ (x - 3)/(x + 2) = -4
[ x - 3 = 4x + 8
[ x - 3 = -4x - 8
[ 3x = - 11
[ 5x = -5
[ x = -11/3
[ x = -1
Это и есть наши корни)
Ну вроде бы все. Если что-то непонятно - пиши ^_^
p.s. не думаю, что тут нужно, но на всякий случай напишем ОДЗ:
x ≠ -2 ; x ≠ 3