Система линейных уравнений, графиком каждого уравнения является прямая. Система не имеет решений, значит графики не пересекаются. Графики не пересекаются, значит прямые параллельны. Надо ответить на вопрос, когда прямые параллельны. Когда их коэффициенты при х и у пропорциональны 2:1=(-1):а а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у. В нашем случае это так 2:1≠5:2 ответ. а=-0,5
График - парабола, ветви вниз, для построения требуются доп точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу: Х= 0 -2 У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!
Система не имеет решений, значит графики не пересекаются.
Графики не пересекаются, значит прямые параллельны.
Надо ответить на вопрос, когда прямые параллельны.
Когда их коэффициенты при х и у пропорциональны
2:1=(-1):а
а=-0,5
Но параллельные прямые могут совпасть, чтобы этого не случилось, надо чтобы отношение свободных коэффициентов не было пропорционально отношению коээфициентов при х и у.
В нашем случае это так
2:1≠5:2
ответ. а=-0,5
В(х; у)
х(в)= -b / 2a
x(в) = 2/-2 = -1
у(в)= -1+2+3=4
В(-1; 4)
ось: х=-1
Найдем нули функции:
-х2-2х+3=0
х2+2х-3=0
Д=4+12=16
х(1)=(-2+4)/2=1
х(2)=(-2-4)/2=-3
График - парабола, ветви вниз,
для построения требуются доп точки.
Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку.
Далее заполняем таблицу:
Х= 0 -2
У= 3 3
Отмечаем вершину, нули и доп точки из таблицы в системе координат, соединяем их. Подписываем график. Всё!