В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
arrow34
arrow34
29.06.2020 08:38 •  Алгебра

Используя метод выделения квадрата двучлен, докажите, что при любых неотрицательных значениях переменной x выполняется неравенство x^3 - 8x√x + 18 > 0

Показать ответ
Ответ:
tmihailviktoroozvxn9
tmihailviktoroozvxn9
14.06.2020 19:29

x^3 - 8x√x + 18=(x√x)^2-2*4*x√x+16+2=(x√x-4)^2+2

квадрат любого числа -- полоңительное число =>(x√x-4)^2>0, тогда и (x√x-4)^2+2>0 что и требовалось доказать

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота