На протяжении всей истории математики[⇨] представление о и допустимых методах доказательства существенно менялось, в основном, в сторону большей формализации и бо́льших ограничений. Ключевой вехой в вопросе формализации доказательства стало создание математической логики[⇨] в XIX веке и формализация её средствами основных техник доказательства. В XX веке построена теория доказательств — теория, изучающая доказательство как математический объект[⇨]. С появлением во второй половине XX века компьютеров особое значение получило применение методов математического доказательства для проверки и синтеза программ[⇨], и даже было установлено структурное соответствие между компьютерными программами и математическими доказательствами (соответствие Карри — Ховарда[⇨]), на основе которого созданы средства автоматического доказательства[⇨].
Объяснение:
Основные приёмы, используемые при построении доказательств: прямое доказательство[⇨], математическая индукция и её обобщения[⇨], доказательство от противного[⇨], контрапозиция[⇨], построение[⇨], перебор[⇨], установление биекции[⇨], двойной счёт[⇨]; в приложениях в качестве математических доказательств привлекаются также методы, не дающие формального доказательства, но обеспечивающие практическую применимость результата[⇨] — вероятностные, статистические, приближённые. В зависимости от раздела математики, используемого формализма или математической школы не все методы могут приниматься безоговорочно, в частности, конструктивное доказательство[⇨] предполагает серьёзные ограничения.
Вспомним свойство что медианы точкой пересечения делиться как 2:1 считая от вершины,то есть: AO/ON=2 ; CO/OM=2 Откуда: AO=2*18/3=12 CO=2*24/3=16. Заметим, что треугольник AOC подобен египетскому прямоугольному треугольнику со сторонами 3,4,5 с коэффициентом подобия 4. Значит его площадь: S(AOC)=12*16/2=96. Тк треугольники AOC и AMC имеют общую высоту,то их площади относятся как основания,то есть: S(AMC)/S(AOC)=MC/OC=3/2 S(AMC)=3/2 *S(AOC). Треугольники ABC и AMC тоже имеют одну высоту,поэтому: S(ABC)/S(AMC)=AB/AM=2 S(ABC)=2*S(AMC)=3*S(AOC)=3*96= =288 см^2. Вообще говоря известный факт ,что три медианы делят площадь треугольника на 3. Тк точка пересечения медиан его центр тяжести.
На протяжении всей истории математики[⇨] представление о и допустимых методах доказательства существенно менялось, в основном, в сторону большей формализации и бо́льших ограничений. Ключевой вехой в вопросе формализации доказательства стало создание математической логики[⇨] в XIX веке и формализация её средствами основных техник доказательства. В XX веке построена теория доказательств — теория, изучающая доказательство как математический объект[⇨]. С появлением во второй половине XX века компьютеров особое значение получило применение методов математического доказательства для проверки и синтеза программ[⇨], и даже было установлено структурное соответствие между компьютерными программами и математическими доказательствами (соответствие Карри — Ховарда[⇨]), на основе которого созданы средства автоматического доказательства[⇨].
Объяснение:
Основные приёмы, используемые при построении доказательств: прямое доказательство[⇨], математическая индукция и её обобщения[⇨], доказательство от противного[⇨], контрапозиция[⇨], построение[⇨], перебор[⇨], установление биекции[⇨], двойной счёт[⇨]; в приложениях в качестве математических доказательств привлекаются также методы, не дающие формального доказательства, но обеспечивающие практическую применимость результата[⇨] — вероятностные, статистические, приближённые. В зависимости от раздела математики, используемого формализма или математической школы не все методы могут приниматься безоговорочно, в частности, конструктивное доказательство[⇨] предполагает серьёзные ограничения.