1.найти ООФ: D(y)=(0;+∞) 2.определить точки пересечения графика ф-ции с осями координат: Если y=0 то, lnx/x=0 lnx=0 x=1 (1;0) 3. четность,нечетность,периодичность: ф-ции ни четная, ни нечетная т.к., х не будет принимать отрицательные значения. Не является периодической. 4.Определим точки возможного экстремума: f'(x)=(lnx/x)'=((1/x)*x-lnx)/x2=(1-lnx)/x2 приравняем ее к нулю. (1-lnx)/x2=0 1-lnx=0 -lnx=-1 lnx=1 x=e -критическая точка. 5. определим точки возможного перегиба, для этого найдем вторую производную: f''(y)=((1-lnx)/x2)'=((-1/x)*x2-(1-lnx)*2x)/x4=(-x-2x*(1-lnx))/x4=(-x-2x+2xlnx)/x4=(-x*(3-2lnx))/x4=(2lnx-3)/x3 (2lnx-3)/x3=0 2lnx-3=0 2lnx=3 lnx=3/2 x=e3/2 6. найдем промежутки возрастания и убывания, точки экстремума,промежутки выпуклости и точки перегиба. результаты запишем в виде таблицы: x | (-∞;e) | e | (e;+∞) | f'(x) | + | | - | f''(x)| - | | + | f(x) | ↗ |max| ↘ |
Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.
D(y)=(0;+∞)
2.определить точки пересечения графика ф-ции с осями координат:
Если y=0 то, lnx/x=0 lnx=0 x=1 (1;0)
3. четность,нечетность,периодичность:
ф-ции ни четная, ни нечетная т.к., х не будет принимать отрицательные значения. Не является периодической.
4.Определим точки возможного экстремума:
f'(x)=(lnx/x)'=((1/x)*x-lnx)/x2=(1-lnx)/x2
приравняем ее к нулю.
(1-lnx)/x2=0 1-lnx=0 -lnx=-1 lnx=1 x=e -критическая точка.
5. определим точки возможного перегиба, для этого найдем вторую производную:
f''(y)=((1-lnx)/x2)'=((-1/x)*x2-(1-lnx)*2x)/x4=(-x-2x*(1-lnx))/x4=(-x-2x+2xlnx)/x4=(-x*(3-2lnx))/x4=(2lnx-3)/x3
(2lnx-3)/x3=0 2lnx-3=0 2lnx=3 lnx=3/2 x=e3/2
6. найдем промежутки возрастания и убывания, точки экстремума,промежутки выпуклости и точки перегиба. результаты запишем в виде таблицы:
x | (-∞;e) | e | (e;+∞) |
f'(x) | + | | - |
f''(x)| - | | + |
f(x) | ↗ |max| ↘ |
( 8 * ( 12 + 18 ) ) : ( 3 - 2 )
Объяснение:
Можно увеличить значение выражения, если умножить 8 на наибольшее число. Но также благодаря делению мы можем уменьшить значение, поэтому сразу делить - плохая идея. Стоит заметить, что в конце стоит -2, и поэтому мы сможем разделить на наименьшее из возможных чисел (ну, кроме нуля, конечно), т.е на (3-2) = 1.
Итого получаем: (8*12+18):(3-2)
Выгодней будет поставить скобки так (8*(12+18)):(3-2), потому что 18 > 12, и увеличивая число, на которое мы умножаем, мы максимально увеличили произведение.
Мы максимально уменьшили делитель и максимально увеличили делимое, следовательно - (8*(12+18)):(3-2) - наибольший из возможных вариантов.