Объяснение:
1) В коробке 2 красных шарика и 3 белых.
Если вынуть 1 красный, то останется 1 красный и 3 белых.
Красных 1/4.
Если вынуть 2 белых, то останется 2 красных и 1 белый.
Белых 1/3.
Всего 2 + 3 = 5 шариков.
ответ Б. 5.
2) У любого куба 8 угловых кубиков с 3 покрашенными гранями,
12*(p-2) кубиков на ребрах с 2 покрашенными гранями,
6(p-2)^2 кубиков на гранях с 1 покрашенной гранью и
(p-2)^3 внутренних граней, которые вообще не покрашены.
Например, у куба 3*3*3 будет 8 кубиков с 3 гранями,
12*1=12 кубиков с 2 гранями, 6*1^2 = 6 кубиков с 1 гранью и 1^3 = 1 кубик внутри.
Всего 8 + 6 = 14 нечетных кубиков и 12 + 1 = 13 четных кубиков.
А должно быть количество четных и нечетных кубиков одинаково.
8 + 6(p-2)^2 = 12(p-2) + (p-2)^3
Делаем замену p-2 = t и получаем кубическое уравнение:
t^3 - 6t^2 + 12t - 8 = 0
Так как t - число натуральное, то оно должно быть делителем 8.
t = 1 не подходит. Попробуем t = 2.
t^3 - 2t^2 - 4t^2 + 8t + 4t - 8 = 0
t^2*(t - 2) - 4t*(t - 2) + 4(t - 2) = 0
(t - 2)(t^2 - 4t + 4) = 0
(t - 2)^3 = 0
t = p - 2 = 2 - подошло.
p = 4
Только у куба 4*4*4 количество кубиков с нечетным числом окрашенных граней равно количеству кубиков с четным числом.
ответ: А. 4.
3. Периметр клумбы P1 = 2(a + b) = 14 м, значит, a + b = 7, b = 7 - a.
Площадь клумбы S1 = ab = a(7 - a) = 7a - a^2 кв.м.
Если длину каждой стороны увеличить на 1 м, то получится:
S2 = (a+1)(8-a) = 8a + 8 - a^2 - a = 7a - a^2 + 8 = S1 + 8 кв.м.
ответ: Площадь увеличится на 8 кв.м.
1.
а) 3(a + 2) + b(a + 2) = (3 + b) * (a + 2)
б) 4f(5m-3n) - 5r(5m-3n) = (4f - 5r) * (5m - 3n)
в) 5m(a - 3d) + a - 3d = 5m(a - 3d) + 1(a - 3d) = (5m + 1) * (a - 3d)
г) 5m(a - 3d) - a + 3d = 5m(a - 3d) + 1(a - 3d) = (5m + 1) * (a - 3d)
2.
а) 3a +6 + ab + 2b = 3(a + 2) + b(a + 2) = (3 + b) * (a + 2)
б) 20fr - 12fn - 25rm + 15mn = 4f(5r - 3n) - 5m(5r -3n) = (4f - 5m) * (5r - 3n)
в) ab + ac + af + b + c + f = a(b + c + f) + 1(b + c + f) = (a + 1) * (b + c + f) (думаю, у Вас тут ошибка, и должна быть именно буква b)
г) x⁵ + x⁴ + x³ +x² + x + 1 = x⁵ + x⁴ + x³ +x² + x¹ + 1 = x³(x² + x¹ + 1) + 1(x² + x¹ + 1) = (x³ + 1) * (x² + x¹ + 1)
Объяснение:
1) В коробке 2 красных шарика и 3 белых.
Если вынуть 1 красный, то останется 1 красный и 3 белых.
Красных 1/4.
Если вынуть 2 белых, то останется 2 красных и 1 белый.
Белых 1/3.
Всего 2 + 3 = 5 шариков.
ответ Б. 5.
2) У любого куба 8 угловых кубиков с 3 покрашенными гранями,
12*(p-2) кубиков на ребрах с 2 покрашенными гранями,
6(p-2)^2 кубиков на гранях с 1 покрашенной гранью и
(p-2)^3 внутренних граней, которые вообще не покрашены.
Например, у куба 3*3*3 будет 8 кубиков с 3 гранями,
12*1=12 кубиков с 2 гранями, 6*1^2 = 6 кубиков с 1 гранью и 1^3 = 1 кубик внутри.
Всего 8 + 6 = 14 нечетных кубиков и 12 + 1 = 13 четных кубиков.
А должно быть количество четных и нечетных кубиков одинаково.
8 + 6(p-2)^2 = 12(p-2) + (p-2)^3
Делаем замену p-2 = t и получаем кубическое уравнение:
t^3 - 6t^2 + 12t - 8 = 0
Так как t - число натуральное, то оно должно быть делителем 8.
t = 1 не подходит. Попробуем t = 2.
t^3 - 2t^2 - 4t^2 + 8t + 4t - 8 = 0
t^2*(t - 2) - 4t*(t - 2) + 4(t - 2) = 0
(t - 2)(t^2 - 4t + 4) = 0
(t - 2)^3 = 0
t = p - 2 = 2 - подошло.
p = 4
Только у куба 4*4*4 количество кубиков с нечетным числом окрашенных граней равно количеству кубиков с четным числом.
ответ: А. 4.
3. Периметр клумбы P1 = 2(a + b) = 14 м, значит, a + b = 7, b = 7 - a.
Площадь клумбы S1 = ab = a(7 - a) = 7a - a^2 кв.м.
Если длину каждой стороны увеличить на 1 м, то получится:
S2 = (a+1)(8-a) = 8a + 8 - a^2 - a = 7a - a^2 + 8 = S1 + 8 кв.м.
ответ: Площадь увеличится на 8 кв.м.
1.
а) 3(a + 2) + b(a + 2) = (3 + b) * (a + 2)
б) 4f(5m-3n) - 5r(5m-3n) = (4f - 5r) * (5m - 3n)
в) 5m(a - 3d) + a - 3d = 5m(a - 3d) + 1(a - 3d) = (5m + 1) * (a - 3d)
г) 5m(a - 3d) - a + 3d = 5m(a - 3d) + 1(a - 3d) = (5m + 1) * (a - 3d)
2.
а) 3a +6 + ab + 2b = 3(a + 2) + b(a + 2) = (3 + b) * (a + 2)
б) 20fr - 12fn - 25rm + 15mn = 4f(5r - 3n) - 5m(5r -3n) = (4f - 5m) * (5r - 3n)
в) ab + ac + af + b + c + f = a(b + c + f) + 1(b + c + f) = (a + 1) * (b + c + f) (думаю, у Вас тут ошибка, и должна быть именно буква b)
г) x⁵ + x⁴ + x³ +x² + x + 1 = x⁵ + x⁴ + x³ +x² + x¹ + 1 = x³(x² + x¹ + 1) + 1(x² + x¹ + 1) = (x³ + 1) * (x² + x¹ + 1)