= -4·((y²-3·y+9/4)+11/4-9/4) = -4·( (y-3/2)²+1/2)≤ -2 < 0, так как
4·( (y-3/2)²+1/2) = 4·(y-3/2)²+2 ≥ 2
Функция f(y)=12·y-4·у²-11 - эта парабола, a= -4, b= 12, c= -11.
d=b²-4·a·c = 12² - 4·(-4)·(-11) = 144 - 176 <0, это означает, что график параболы не пересекает ось Оу, т.е. график находится целиком выше чем Оу или целиком ниже чем Оу. Коэффициент -4 < 0 при у², так что ветви параболы направлены вниз. Отсюда заключаем, что парабола находится целиком ниже чем Оу, т.е. f(y) < 0
Выделим полный квадрат из выражения
4m²+3mn+2n²=(4m²+3mn+9n²/16)+2n²-9n²/16=(2m+3n/4)²+23n²/16
Квадрат любого числа положителен или равен 0,сумма положительных положительна.Значит знаменатель дроби положителен⇒5/(4m²+3mn+2n²)>0
2
a)5x²+20x+15=5(x²+4x+3)
2x³+9x²+10x+3=x²(2x+1)+4x(2x+1)+3(2x+1)=(2x+1)(x²+4x+3)
(5x²+20x+15)/(2x³+9x²+10x+3)=5(x²+4x+3)/(2x+1)(x²+4x+3)=5/(2x+1)
b)(n^4-9n^3+12n^2+9n-13)/(n^4-10n^3+22n^2-13n) =
=[(n^4+n³)-(10n³-10n²)+(22n²+22n)_(13n+13)]/n(n³-10n²+22n-13)=
=[n³(n+1)-10n(n+1)+22n(n+1)-13(n+1)]/n(n³-10n²+22n-13)=
=(n+1)(n³-10n²+22n-13)/n(n³-10n²+22n-13)=(n+1)/n
Неравенство верно
Объяснение:
у²-11 = -4·(y²-3·y+11/4) =
= -4·((y²-3·y+9/4)+11/4-9/4) = -4·( (y-3/2)²+1/2)≤ -2 < 0, так как
4·( (y-3/2)²+1/2) = 4·(y-3/2)²+2 ≥ 2
Функция f(y)=12·y-4·у²-11 - эта парабола, a= -4, b= 12, c= -11.
d=b²-4·a·c = 12² - 4·(-4)·(-11) = 144 - 176 <0, это означает, что график параболы не пересекает ось Оу, т.е. график находится целиком выше чем Оу или целиком ниже чем Оу. Коэффициент -4 < 0 при у², так что ветви параболы направлены вниз. Отсюда заключаем, что парабола находится целиком ниже чем Оу, т.е. f(y) < 0