ответ:Рекуррентная формула — формула вида {\displaystyle a_{n}=f(n,a_{n-1},a_{n-2},\dots ,a_{n-p})}, выражающая каждый член последовательности a_n через p предыдущих членов и номер члена последовательности n.
Общая проблематика вычислений с использованием рекуррентных формул является предметом теории рекурсивных функций.
Рекуррентным уравнением называется уравнение, связывающее несколько подряд идущих членов некоторой числовой последовательности. Последовательность, удовлетворяющая такому уравнению, называется рекуррентной последовательностью.
Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-
ответ:Рекуррентная формула — формула вида {\displaystyle a_{n}=f(n,a_{n-1},a_{n-2},\dots ,a_{n-p})}, выражающая каждый член последовательности a_n через p предыдущих членов и номер члена последовательности n.
Общая проблематика вычислений с использованием рекуррентных формул является предметом теории рекурсивных функций.
Рекуррентным уравнением называется уравнение, связывающее несколько подряд идущих членов некоторой числовой последовательности. Последовательность, удовлетворяющая такому уравнению, называется рекуррентной последовательностью.
Объяснение:
Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-