Графический 1. построить график каждого уравнения системы в координатной плоскости; 2.найти координаты общих точек этих графиков. 3. записать ответ подстановки: 1.выбрать уравнение( лучше то, где числа меньше) и выразить из него одну переменную через другую. 2. полученное выражение подставить вместо соответствующей переменной в другое уравнение. Получаем линейное уравнение с одной неизвестной. 3. решаем полученное уравнение. 4. подставляем полученное значение в уравнение п 1 выражение. получаем значение второго неизвестного 5. делаем проверку сложения: 1.уравняем коэффициенты при одной из неизвестных переменных в обоих уравнениях. 2. складываем уравнения. Получаем уравнение с одной неизвестной 3. решаем полученное уравнение 4. подставить полученное значение в любое из двух уравнений системы. Получаем значение второй переменной. 5. делаем проверку
1) Сечение строится по заданным точкам.
Точку N находим в соответствии со свойством биссектрисы (см. пункт 2). Ребро СС1 точкой N делится в отношении 3:5.
2) По заданию AN является биссектрисой угла CAC1.
Диагональ АС1 боковой грани по Пифагору равна √(6² + 8²) = 10.
Примем СN = х.
По свойству биссектрисы х/6 = (8 - х)/10. Сократим знаменатели на 2.
24 - 3х = 5х,
8х = 24,
х = 24/8 = 3.
По заданию ВМ = 8/2 = 4.
Сечение AMN от призмы отсекает пирамиду с основанием BCNM, которое является трапецией (CN ║BM).
S(BCNM) =((3+4)/2)*6 = 21 кв.ед.
Высота H этой пирамиды равна высоте основания АВС.
H = 6*cos 30° = 6*√3/2 = 3√3.
V1 = V(ABCNM) = (1/3)*21*3√3 = 21√3 куб.ед.
Площадь основания призмы So = 6²√3/4 = 9√3 кв.ед.
Объём призмы V = 9√3*8 = 72√3 куб.ед.
Объём отсечённой части призмы равен V2 = 72√3 - 21√3 = 51√3 куб.ед.
ОтношениеV1/V2 = 21√3/51√3 = 7/17.
1. построить график каждого уравнения системы в координатной плоскости;
2.найти координаты общих точек этих графиков.
3. записать ответ
подстановки:
1.выбрать уравнение( лучше то, где числа меньше) и выразить из него одну переменную через другую.
2. полученное выражение подставить вместо соответствующей переменной в другое уравнение. Получаем линейное уравнение с одной неизвестной.
3. решаем полученное уравнение.
4. подставляем полученное значение в уравнение п 1 выражение. получаем значение второго неизвестного
5. делаем проверку
сложения:
1.уравняем коэффициенты при одной из неизвестных переменных в обоих уравнениях.
2. складываем уравнения. Получаем уравнение с одной неизвестной
3. решаем полученное уравнение
4. подставить полученное значение в любое из двух уравнений системы. Получаем значение второй переменной.
5. делаем проверку