В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
leimaegirl
leimaegirl
24.03.2021 22:08 •  Алгебра

Исследовать на экстремум функцию: y=x^3 - 6x^2

Показать ответ
Ответ:
gabpara007
gabpara007
30.12.2021 11:10
1. Найдём производную функцию
y’=3x^2-12x
2. Приравняем производную к нулю и найдём критические точки
3х^2-12х=0
3x(x-4)=0
3x=0, х-4=0
x=0. х=4
Получили две критические точки x=0 и х=4. Обозначим найденные корни на числовой оси и определим знак производной на полученных интервалах. (во вложении)
В точке x =0 производная меняет знак с «+» на «-», значит в этой точке максимум. Вычислим значение максимума:
Ymax=y(0)=0^3-6*0^2=0
В точке x=4 производная меняет знак с «-» на «+», значит это точка минимума. Значение минимума соответственно равно
Ymin=y(4)=4^3-6*4^2=64-96=-32

Исследовать на экстремум функцию: y=x^3 - 6x^2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота