Считаем число цифр в периоде k=3. В непериодической части после запятой m=0. Записываем все цифры числа а=162. Все цифры непериод. части после запятой - b=0. Cчитаем по формуле:
1.Весь обьем работы принимаем за 1. 2. Х - это время за которое всю работу сам выполнит 1 слесарь 3. Y - это время за которое всю работу сам выполнит 2 слесарь
Так как второй на 1 час=60 минут дольше, то первое уравнение системы
y - x = 60
Составляем второе уравнение:
1. Так как вся работа - это 1, то 1 слесарь за 1 минуту выполняет 1/x часть работы а второй за 1 минуту - 1/y часть работы
2. Работают вместе
1 слесарь 45 минут - значит всего выполнил работы - 1/x × 45
2 слесарь 45 минут и еще 2 часа 15 минут Итого работает 3 часа= 180 минут
Значит выполнил 1/y × 180 часть работы
вся работа - 1
уравнение получается:
1/x×45 + 1/y × 180 = 1 Решаем систему
Вышлю фото при необходимо сти.
При решении системы получается квадратное уравнение x^2 - 165x - 2700=0 x = 180
Тогда y = 180+60= 240
ответ: 1 слесарь = за 3 часа, 2 слесарь - за 4 часа
При решении будем использовать следующие формулы:
\begin{gathered}1.b_n=b_1*q^{n-1} 2.q= \frac{b_{n+1}}{b_n} 3.S_n= \frac{b_1(1-q^n)}{1-q} \end{gathered}
1.b
n
=b
1
∗q
n−1
2.q=
b
n
b
n+1
3.S
n
=
1−q
b
1
(1−q
n
)
5. 0,(162)
Считаем число цифр в периоде k=3. В непериодической части после запятой m=0. Записываем все цифры числа а=162. Все цифры непериод. части после запятой - b=0. Cчитаем по формуле:
x= \frac{a-b}{99...00...}x=
99...00...
a−b
,
где девяток k, а нулей - m.
0,(162)= \frac{162}{999}0,(162)=
999
162
0,8(4) -аналогично.
k=1,m=1, a=84, b=8
0,8(4) = \frac{84-8}{90} = \frac{76}{90} = \frac{38}{45}0,8(4)=
90
84−8
=
90
76
=
45
38
1 - n-й член
2 - знаменатель прогрессия
3 - сумма n первых членов
\begin{gathered} 1) b_1=-125, q= \frac{1}{5} \\b_5=-125*(\frac{1}{5})^4=-0,22)b_1=4,q=2S_8= \frac{4(1-2^8)}{1-2} = \frac{4(2-256)}{-1} =10203) b_1=36, b_2=-12q= \frac{-12}{36} =- \frac{1}{3} S_n= \frac{b_1}{1-q} = \frac{36}{1+ \frac{1}{3} } =274)b_3=0,05,b_5=0,45\\b_5=b_3*q^2\\0,05q^2=0,45\\q^2=9\\q=3\\b_3=b_1*q^{n-1}\\b_1*3^2=0,05\\b_1= \frac{0,05}{9} S_8= \frac{\frac{0,05}{9} (1-3^8)}{1-3} = \frac{164}{9} \end{gathered}
1)b
1
=−125,q=
5
1
b
5
=−125∗(
5
1
)
4
=−0,2
2)b
1
=4,q=2
S
8
=
1−2
4(1−2
8
)
=
−1
4(2−256)
=1020
3)b
1
=36,b
2
=−12
q=
36
−12
=−
3
1
S
n
=
1−q
b
1
=
1+
3
1
36
=27
4)b
3
=0,05,b
5
=0,45
b
5
=b
3
∗q
2
0,05q
2
=0,45
q
2
=9
q=3
b
3
=b
1
∗q
n−1
b
1
∗3
2
=0,05
b
1
=
9
0,05
S
8
=
1−3
9
0,05
(1−3
8
)
=
9
164
2. Х - это время за которое всю работу сам выполнит 1 слесарь
3. Y - это время за которое всю работу сам выполнит 2 слесарь
Так как второй на 1 час=60 минут дольше, то первое уравнение системы
y - x = 60
Составляем второе уравнение:
1. Так как вся работа - это 1, то 1 слесарь за 1 минуту выполняет 1/x часть работы а второй за 1 минуту - 1/y часть работы
2. Работают вместе
1 слесарь 45 минут - значит всего выполнил работы - 1/x × 45
2 слесарь 45 минут и еще 2 часа 15 минут Итого работает 3 часа= 180 минут
Значит выполнил 1/y × 180 часть работы
вся работа - 1
уравнение получается:
1/x×45 + 1/y × 180 = 1
Решаем систему
Вышлю фото при необходимо сти.
При решении системы получается квадратное уравнение
x^2 - 165x - 2700=0
x = 180
Тогда y = 180+60= 240
ответ: 1 слесарь = за 3 часа, 2 слесарь - за 4 часа