Исследовать совмеcтность, найти общее и одно частное решение системы линейных алгебраических уравнений (для соответствующей однородной системы написать фундаментальную (основную) систему решений).
2х1-х2+3х3-7х4=5
6х1-3х2+х3-4х4=7
4х1-2х2+14х3-31х4=18
3.1
-2х²+3х+2=0;
2х²-3х-2=0;
х=(3±√(9+16))/4=(3±5)/4 х=8/4=2 ;х=-1/2
Решим неравенство методом интервалов.
-1/22
- + -
х∈(-∞;-1/2)∪(2;+∞)
наибольшее отрицательное можно найти если среди целых, то -1, наименьшее положительное, если среди целых, то 3.
иначе нет. либо, если бы было условие нестрогого неравенства.
3.2
пусть первоначальная скорость была х, тогда учитывая, что 20 мин. =(1/3)ч., получим уравнение
40/х-40/(х-10)=1/3
х≠0; х≠10
3*40*(х-х+10)=х²-10х
х²-10х-1200=0 По Виету х= -30 - не подходит по смыслу задачи.
х=40
ответ 40 км/ч
Объяснение:
√81*0,25=√9*9*0,5*0,5=9*0,5=4,5.
√14,4*3,6=√ 14,4*10/10*3,6*10/10=√144*36*100/100=12*6/10=7,2.
√64*0,04=√8*8* 0,2*0,2=8*0,2=1,6.
√4/25=√2*2/5*5=2/5=0,4.
√7 1/9=√64/9=√8*8/3*3=8/3=2 2/3.
√1 11/25=√36/25=6/5=1 1/5.
√72*32=√8*9*8*2*2=8*3*2=48.
√0,64*9=0,8*3=2,4.
√4,9*12,1=√4,9*10*12,1*10/100=√7*7*11*11/100=7*11/10=7,7.
√3,6*250=√36*25=6*5=30.
√25/16=5/4=1 1/4=1.25.
√1 19/81=√100/81=10/9=1 1/9.
√3 6/25=√81/25=9/5=1 4/5=1,8.
√98*18=√2*7*7*2*3*3=2*7*3=42.
√9*36=3*6=18.
√0,49*25=0,7*5=3,5.
√100*0,64=10*0,8=8.
√4/9=2/3.
√81/100=9/10.
√169/225=13/15.
√810*40=√810/10*40*10=√81*400=9*20=180.