Исследуя формулу корней квадратного уравнения с целыми коэффициентами покажите что один из корней уравнения является иррациональным числом вида (m+-/n), то число (m- -/n) также удовлетворяет уравнению.
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
График функции заданный уравнением у=(а+1)x+а-1 пересекает ось абсцисс в точке с координатами (-2; 0) 1) найти значение a 2) запишите функцию вида у=kx+b 3) не выполняя построение графика функции, определите четверть через которую проходит.
1) у=(а+1)x+а-1 , Дано: если x = - 2 , то y =0 0 =(a+1)*(-2) + a -1 ⇔ 0 = - 2a - 2 + a -1 ⇔ a = - 3 . --- 2) у=(а+1)x+а-1 , a = - 3 у=(-3+1)x + (-3)-1 ⇔ у = - 2x - 4. * * * k =tgα= - 2< 0 ↓ ; b = -4 * * * --- 3) у = - 2x - 4 * * * x =0 ⇒ y = - 4 * * * График функции проходит через точек (- 2; 0) и (0 ,- 4) ,следовательно проходит через 2 ,3 и 4 четверть. Можно по другому: у = - 2x - 4⇔ 2x +у = - 4 ⇔ x/(-2) +у /(-4) = 1. Уравнение прямой в отрезках ( x/a +y/b =1) . * * * абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy, считая от начала координат * * * График проходит через 2 ,3 и 4 четверть.
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.
График функции заданный уравнением у=(а+1)x+а-1 пересекает ось абсцисс в точке с координатами (-2; 0)
1) найти значение a
2) запишите функцию вида у=kx+b
3) не выполняя построение графика функции, определите четверть через которую проходит.
1)
у=(а+1)x+а-1 ,
Дано: если x = - 2 , то y =0
0 =(a+1)*(-2) + a -1 ⇔ 0 = - 2a - 2 + a -1 ⇔ a = - 3 .
---
2)
у=(а+1)x+а-1 , a = - 3
у=(-3+1)x + (-3)-1 ⇔ у = - 2x - 4. * * * k =tgα= - 2< 0 ↓ ; b = -4 * * *
---
3)
у = - 2x - 4 * * * x =0 ⇒ y = - 4 * * *
График функции проходит через точек (- 2; 0) и (0 ,- 4) ,следовательно проходит через 2 ,3 и 4 четверть.
Можно по другому:
у = - 2x - 4⇔ 2x +у = - 4 ⇔ x/(-2) +у /(-4) = 1. Уравнение прямой в отрезках ( x/a +y/b =1) .
* * * абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy, считая от начала координат * * *
График проходит через 2 ,3 и 4 четверть.