1 область определения находим из условия 3-2х-х²≥0
-3+2х+х²≥0, по теореме, обратной теореме Виета, левая часть имеет корни х=1, х=-3, и левая часть раскладывается на линейные множители (х-1)*(х+3)≤0, мтеодом интервалов находим
____-3_______1_________
+ - +
т.е. область определения [-3;1]
Область значений - все неотрицательные действительные числа.
Наименьшее значение равно нулю.
Найдем критические точки, для чего ищем производную
f'(x)=(1/2√(3-2х-х²))*(-2x-2)
Производная равна нулю, если х=-1, Исследуем функцию на максимум, минимум и экстремум
_-3_______-1_______1_____
+ -
Значит, -1- точка максимума, максимум равен √(3-2*(-1)-(-1)²)=√4=2
При переходе через критическую точку знак производной меняется с плюса на минус, значит, на промежутке [-3 ;-1] функция возрастает, а на промежутке [-1 ;1] функция убывает.
1 область определения находим из условия 3-2х-х²≥0
-3+2х+х²≥0, по теореме, обратной теореме Виета, левая часть имеет корни х=1, х=-3, и левая часть раскладывается на линейные множители (х-1)*(х+3)≤0, мтеодом интервалов находим
____-3_______1_________
+ - +
т.е. область определения [-3;1]
Область значений - все неотрицательные действительные числа.
Наименьшее значение равно нулю.
Найдем критические точки, для чего ищем производную
f'(x)=(1/2√(3-2х-х²))*(-2x-2)
Производная равна нулю, если х=-1, Исследуем функцию на максимум, минимум и экстремум
_-3_______-1_______1_____
+ -
Значит, -1- точка максимума, максимум равен √(3-2*(-1)-(-1)²)=√4=2
При переходе через критическую точку знак производной меняется с плюса на минус, значит, на промежутке [-3 ;-1] функция возрастает, а на промежутке [-1 ;1] функция убывает.
График см. во вложении.
и постройте ее график?" />