Пусть скорость из А -х км/ч, из В- у км/ч. Когда машины двигаются навстречу их скорость (х+у) км/ч, зная расстояние, которое они пройдут до встречи и время, составим уравнение: 280/(х+у) =2- это первое уравнение системы. Когда машины двигаются " вдогонку", их скорость (х-у) км/ч, зная расстояние, которое они пройдут до встречи и время, составим уравнение:280/(х-у)=14. Решаем систему: х=20+у, подставим в первое получаем 280/(20+у+у)=2, 2у=120, у=60, х=20+60=80 ответ: 80 км/ч из А, 60 км/ч из В
Пусть скорость горной реки х Плот плывет по реке 21 км в течение 21:х часовТуристы на лодке все расстояние проплыли за такое же время: 54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х Составим и решим уравнение: 54:(12+х) +0,5 =21:х Умножим обе части на х(12+х), чтобы избавиться от дробей: 54х +0,5х(12+х) =21(12+х) 54х +6х +0,5х² =252+21х 0,5х²+39х -252=0 D=b²-4ac=39²-4·0.5·-252=2025 Так как дискриминант больше нуля, то уравнение имеет два корня Один отрицательный и не подходит ( -84)Второй = 6 Скорость течения горной реки 6 км/ч
ответ: 80 км/ч из А, 60 км/ч из В
Плот плывет по реке 21 км в течение 21:х часовТуристы на лодке все расстояние проплыли за такое же время:
54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х
Составим и решим уравнение:
54:(12+х) +0,5 =21:х
Умножим обе части на х(12+х), чтобы избавиться от дробей:
54х +0,5х(12+х) =21(12+х)
54х +6х +0,5х² =252+21х
0,5х²+39х -252=0
D=b²-4ac=39²-4·0.5·-252=2025
Так как дискриминант больше нуля, то уравнение имеет два корня
Один отрицательный и не подходит ( -84)Второй = 6
Скорость течения горной реки 6 км/ч