Положим, у Вас есть график у=f(х), если Вам надо построить график у=f(x+4), передвигаете вдоль оси ох на 4 единицы влево график функции у=f(х), если строите график у=f(x-4), то передвигаете на 4единицы вправо график у=f(х).
По Вашему рисунку 5, сначала строите график у=sinx, а затем переносите этот график на π/3 вправо, т.е. на две клетки тетрадной страницы и получаете график у=sin(x-π/3), т.к. отнимаем от аргумента π/3
Если бы пришлось к функции добавить 4 единицы, график подняли бы на 4единицы вверх, если отняли 4 единицы, то график опустили бы на 4 единицы вниз.
по первой картинке 4. Просто построили график у=cosx по точкам, а потом умножили на 1/2, т.е. сплюстнули в два раза график, он стал ниже в два раза, если бы был у=2cosx , то график стал бы выше в два раза.
Вот такие вот преобразования графика тригонометрической функции.
Для начала, можно посмотреть несколько последовательных степеней двойки: 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 Как видим, последняя цифра меняется так: 2, 4, 8, 6. А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр. Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты: 1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени) 2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2 3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4 4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
Положим, у Вас есть график у=f(х), если Вам надо построить график у=f(x+4), передвигаете вдоль оси ох на 4 единицы влево график функции у=f(х), если строите график у=f(x-4), то передвигаете на 4единицы вправо график у=f(х).
По Вашему рисунку 5, сначала строите график у=sinx, а затем переносите этот график на π/3 вправо, т.е. на две клетки тетрадной страницы и получаете график у=sin(x-π/3), т.к. отнимаем от аргумента π/3
Если бы пришлось к функции добавить 4 единицы, график подняли бы на 4единицы вверх, если отняли 4 единицы, то график опустили бы на 4 единицы вниз.
по первой картинке 4. Просто построили график у=cosx по точкам, а потом умножили на 1/2, т.е. сплюстнули в два раза график, он стал ниже в два раза, если бы был у=2cosx , то график стал бы выше в два раза.
Вот такие вот преобразования графика тригонометрической функции.
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
Как видим, последняя цифра меняется так: 2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.