В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Лика1508
Лика1508
20.08.2020 17:49 •  Алгебра

Исследуйте функцию у=sinx-ctgx на периодичность,укажите основной период,если он существует.. !

Показать ответ
Ответ:
lolko2
lolko2
03.10.2020 00:19
У синуса период 2П,у котангенса П.Общий 2П
0,0(0 оценок)
Ответ:
sahin123321
sahin123321
15.01.2024 13:49
Чтобы исследовать периодичность функции у=sinx-ctgx, мы должны рассмотреть поведение функции при изменении аргумента.

Период функции - это такое значение аргумента, при котором функция принимает такое же значение, как и в начальной точке своего отрезка. Другими словами, если у=sinx-ctgx повторяется через определенный интервал, этот интервал и будет периодом функции.

Период синусоидальной функции sinx равен 2π. Это означает, что функция sinx повторяется каждые 2π радиан.

Период котангенса функции cotgx равен π. Это означает, что функция cotgx повторяется каждые π радиан.

Чтобы исследовать период функции у=sinx-ctgx, мы должны найти наименьшее общее кратное периода функций sinx и cotgx. Давайте найдем НОК.

Для этого нужно найти наибольший общий делитель (НОД) периодов sinx и cotgx.

Период sinx равен 2π, а cotgx - π.

Разлагаем на множители описание периодов.

2π = (2 * π)
π = (π)

Сейчас найдем НОД.

НОД(2π, π) = π

Теперь можем вычислить НОК.

НОК(2π, π) = (2π * π) / π = 2π

Таким образом, период функции у=sinx-ctgx равен 2π. Функция будет повторяться каждые 2π радиан.

Обоснование:

Учитывая, что sinx и ctgx являются периодическими функциями, функция с их комбинацией также будет периодической.

По отдельности sinx и ctgx повторяются через определенное количество радиан, и сочетание их влияет на период функции у=sinx-ctgx.

Наибольшее общее кратное периодов sinx и ctgx дает нам период функции у=sinx-ctgx.

После вычисления НОД и НОК, мы видим, что период функции равен 2π.

При совершении увеличивающего или уменьшающего шага на 2π входная переменная аргумента функции у=sinx-ctgx достигает того же значения, что и в начальной точке, что доказывает периодичность функции у=sinx-ctgx.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота