В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Rudisaleh
Rudisaleh
03.12.2020 18:08 •  Алгебра

Исследуйте функцию y = x^2-10x+24 и постройте её график ​


Исследуйте функцию y = x^2-10x+24 и постройте её график ​

Показать ответ
Ответ:
dianapanova2004
dianapanova2004
07.08.2021 22:20
Уравнение любой касательной к любому графику находится по формуле:
f'(x_{0})*(x-x_{0})+f(x_{0})
Где f'(x_{0}) производная функции в данной точке. А x_{0} точка касания по иксу.

1)
Поначалу у функции y=x^{0,2} мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
f'(x)=nx^{n-1} - где n это степень.
В нашем случае:
f'(x)=0,2x^{0,2-1}= 0,2x^{-0,8}
Так, нашли производную общего случая.

Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y=0,2x_{0}^{-0,8}*(x-x_{0})+x_{0}^{0,2}

2) 
Опять же, найдем производную 
y=\frac{1}{3}^{(x-2)-1}
f'(x)=(x-3)x^{(x-4)}
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y= (x_{0}-3)x_{0}^{(x_{0}-4)}*(x-x_{0})+(1/3)^{(x_{0}-3)}

То есть, берешь любой икс, и вставляешь в выражение касательной вместо x_{0} и получаешь уравнение касательной.

Это и есть окончательные ответы. 
Если что-то не правильно, то это значит что вы не правильно написали условие.
0,0(0 оценок)
Ответ:
ЯЯЯ03
ЯЯЯ03
23.03.2022 15:36
Так как a, b, c - последовательные члены арифметической прогрессии, то b и с можно выразить через а и разность прогрессии d:
x_{k-1}=a \\\ x_{k}=b=a+d \\\ x_{k+1}=c=a+2d
Характеристическое свойство арифметической прогрессии: каждый член арифметической прогрессии, начиная со второго, равен полусумме предыдущего и последующего члена.
Значит, нужно доказать, что:
a^2+ac+c^2= \frac{(a^2+ab+b^2)+(b^2+bc+c^2)}{2}
Выполняем преобразования:
2(a^2+ac+c^2)=a^2+ab+b^2+b^2+bc+c^2 \\\ 2a^2+2ac+2c^2=a^2+ab+2b^2+bc+c^2 \\\ a^2+2ac+c^2=ab+2b^2+bc
Выражаем b и с через а и d:
a^2+2a(a+2d)+(a+2d)^2=a(a+d)+2(a+d)^2+(a+d)(a+2d) \\\ a^2+2a^2+4ad+a^2+4ad+4d^2= \\\ =a^2+ad+2a^2+4ad+2d^2+a^2+2ad+ad+2d^2
\\\
4a^2+8ad+4d^2=4a^2+8ad+4d^2
Слева и справа записаны одинаковые выражения. Значит, заданные числа удовлетворяют характеристическому свойству и являются последовательными членами арифметической прогрессии
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота