Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
Так как ты не предоставил задачки и варианты ответов к части А, я предположу, что тебе нужен ответ на В1.
Пусть сторона квадрата равна а, тогда длина прямоугольника равна а+8, а ширина прямоугольника равна а-8. Получаем, что площадь квадрата равна а^2, а площадь прямоугольника равна (а+8)(а-8).
Sпр=(а-8)(а+8)=а^2-8^2=a^2-64
Так как квадрат равен a^2, то его площадь больше прямоугольника на 64 см.
ответ: Площадь квадрата больше площади прямоугольника на 64 см.
Объяснение:
Применяется формула разности квадратов. а^2-b^2=(a-b)(a+b)
Дано:
Торможение:
1-я сек. - 16 м
каждая следующая сек. на 1.1 м меньше
Найти: ? полных сек. для остановки
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
Округляем до целых секунд: 15.(54)≈16 сек.
ответ: полных 16 сек. потребуется
Так как ты не предоставил задачки и варианты ответов к части А, я предположу, что тебе нужен ответ на В1.
Пусть сторона квадрата равна а, тогда длина прямоугольника равна а+8, а ширина прямоугольника равна а-8. Получаем, что площадь квадрата равна а^2, а площадь прямоугольника равна (а+8)(а-8).
Sпр=(а-8)(а+8)=а^2-8^2=a^2-64
Так как квадрат равен a^2, то его площадь больше прямоугольника на 64 см.
ответ: Площадь квадрата больше площади прямоугольника на 64 см.
Объяснение:
Применяется формула разности квадратов. а^2-b^2=(a-b)(a+b)