исследуйте систему уравнений на совместность, в случае совместности постройте общее решение : а) 4x1-3x2+2x3-x4=8
3x1-2x2 +x3-3x4 =7
2x1-x2-5x4 =5
5x1-3x2 +x3-8x4 =1
б) 6x1-2x2+2x3+5x4+7x5=0
9x1-3x2+4x3+8x4+9x5=0
15x1-5x2+10x3+15x4+10x5=0
3x1-x2+4x3+4x4-x5=0
Волшебный праздничек Рождества моя семейство празднует любой год. Обыкновение намереваться всей семьей за большущим столом присутствовала сколько я себя помню. Дед всякий раз посиживает на знатном и ведает ситуации из собственной жизни. Почти все его рассказы мы знаем на память, но любой один заботливо Ему хорошо наше забота. Наряженная елка мигает разноцветными светом и пахнет мандаринами и жареной уткой. Целый денек перед праздничным днем заполнен сутолокой и ожиданием чуда. Новогодний сочельник для меня полон чудес. Всякий раз что-нибудь случается, чего не ожидаешь. Прибывают постояльцы, коим всякий раз прежде. У матери внезапно выходит самый благовидный и аппетитный тортик. Или же я нахожу под подушкой кусок мяса, бережно спрятанный котом.
Ну мне кажется,Набоков был очень смелым,у него была только одна цель - преодоление страха смерти. Исконная экзистенциальная неувязка боязни погибели и отчаяния перед её лицом делается предметом изучения.Набоков избирает самую трагическую историю - основатель, теряющий отпрыска. Это несчастье ненормально и вследствие того неутешно. Погибель отпрыска – воплощение исконного людского боязни, победа над жизнью. В заключении помереть самому функционирует иная ипостась погибели – смерть-избавительница. Например собственно что в том числе и испуг погибели не одергивает героя.
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.