Итоговая контрольная Решите неравенство 5х – 7 ≥ 7х – 5.
2. Решите уравнение х2 – 10х + 25 = 0.
3. Сравните 56,78 ∙ 106 и 5,687 ∙ 107.
4. Решите систему уравнений:
5. Постройте график функции у = 7х – 5 и найдите, при каких значениях х значения у не меньше – 40.
6. В арифметической прогрессии второй член равен 9, а разность равна 7. Найдите десятый член этой прогрессии и сумму первых десяти ее членов.
8. Моторная лодка против течения реки 8 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.
Первый вариант
x^2-4x+5 =x^2-4x+4+1 =(x-2)^2+1
так как квадрат разности (х-2)^2 >=0 при всех значениях х на числовой оси то
сумма (x-2)^2+1>0 или принимает только положительные значения при всех значениях х
Второй вариант
x^2-4x+5 =0
D=16-20=-4<0
Так как коэффициент при х^2 больше нуля (1>0) и дискриминант отрицателен, то гарфик параболы не имеет точек пересечения с осью Ох и находится выше оси Ох.
Поэтому при любых значениях х x^2-4x+5>0
б) Исходное выражение равно n(n^2+1)(n+5). При n=2 число не кратно 6, т.к. ни один из сомножителей 2, 5, 7 не кратен 3.
в) n^3-4n=n(n^2-4)=n(n-2)(n+2)
Если исходное число четно, это означает, что по крайней мере один из сомножителей четный. Но тогда и остальные сомножители четны, и вся тройка имеет вид 2k, 2(k+1), 2(k+2).
Произведение гарантированно делится на 8. Теперь достаточно доказать, что k(k+1)(k+2) делится на 48/8=6. Но это очевидно, так как среди любых M последовательных чисел всегда найдется ровно одно, делящееся на M. В частности, ровно 1 из сомножителей k и k+1 четно и ровно 1 из всех трех сомножителей делится на 3. Тогда произведение делится на 2*3=6 и требуемое утверждение доказано.