Из аэропортов м и к вылетели самолеты в 11 часов по местному времени. длительность полета каждого из самолетов одинаковая. самолет из аэропорта м вылетел на 5 часов раньше, чем приземлился самолет из аэропорта к, а приземлился на 7 часов позже, чем вылетел самолет из аэропорта к. какая была длительность полёта (в часах)?
Пусть сторона куба при распиливании была разделена на х частей.
Тогда неокрашенных кубиков (внутренних) будет (х-2)^3, а число кубиков, у которой окрашена ровно одна грань (кубики на гранях большого, не прилежащие к ребрам) равно 6·(х-2)^2.
Получаем уравнение (x-2)^3 = 6·(x-2)^2 или x-2 = 6, x = 8
Куб распилили на 8^3 = 512 кубиков.
——————————————————————
Кубиков с 3 окрашенными гранями – 8
Кубиков с 2 окрашенными гранями – 6·12 = 72
Кубиков с 1 окрашенной гранью – 6·6·6 = 216
Неокрашенных кубиков – 6·6·6 = 216
ответ: х∈R
Объяснение:
1. Приравняем левую часть к нулю.
2. Решаем квадрантное уравнение. Дискриминант меньше нуля, значит методом интервалов решить неравенство не получится. Решаем графическим :
3. Левая часть - это квадратичная функция y= x^2+2x+3, график функции парабола, ветви которой направлены вверх ( т.к а>0).
4. Чертим ось Х. Т.к уравнение х^2 +2х + 3=0 не имеет корней, значит график не будет пересекать ось х. Он находится выше оси х ( при х=0, у=3)
5. Т.к график находится выше оси х, то какое бы число мы не подставили в функцию вместо х, у останется положительным. Следовательно для данного неравенства ответ такой: х∈R
(Второе фото: небольшая шпаргалка для решения квадратных неравенств)