Из двух городов A и B, расстояние между которыми равно 116 км, одновременно выехали две автомашины.
Скорость первой машины равна 99 км/ч, а скорость второй машины — 41 км/ч. На каком расстоянии от города B первая машина догонит вторую и через какое время?
ответ: первая машина догонит вторую на расстоянии
км от города B, и это случится через
часа.
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
1. Напишите уравнение прямой, проходящей через заданные точки: A (2; 1) B (-1; 2). [2 балла]
2. Найти координаты и радиус центра круга в соответствии с заданным уравнением: (x-4) 2 + (y + 8) 2 = 36 [1 балл]
3. Очки даны.
а) опираться на координаты потолков; [1 балл]
б) найти длину стен; [3 балла]
в) определить тип (равносторонний, равносторонний, прямоугольный); [2 балла]
г) Рассчитать площадь данного треугольника. [2 балла]
4. Найдите площадь прямоугольника с вершинами A (1; -1) B (0; 1) C (4; 3) и D (5; 1) и докажите, что это прямоугольник. Сделать это:
а) нарисуйте схему координат потолков; [1 балл]
б) найти длину стен; [4 балла]
в) определить и доказать диагонали; [2 балла]
г) Рассчитайте площадь прямоугольника. [2 балла]
Объяснение:
памагитеее