Из двух городов A и B, расстояние между которыми равно 140 км, одновременно выехали две автомашины. Скорость первой машины равна 92 км/ч, а скорость второй машины — 57 км/ч. На каком расстоянии от города B первая машина догонит вторую и через какое время? ответ: первая машина догонит вторую на расстоянии км от города B, и это случится через часа.
4х-3х=7+3
Х=10
2) х. -<В,тогда <А=3х,<С=2*3х=6х
Составим уравнение:
Х+3х+6х=180град.
10х=180
Х=18 град. <В
3*18=54град. <А
6*18=108 град .<С
3){х-у=1
{х+у=3
Решаем сложением
2х=4
Х=2
2-у=1
У=1
б){2х-3у=3
{3х+2у=11
2х-3у=3
Х=3-3у/2
3(3-3у)/2+2у=11
9-9у/2+2у=11
-2,5у=11-9
У=-0,8
2х-3*(-0,8)=3
2х=3-2,4
Х=0,3
4)х в 1-й коробке
210-х -во 2-й коробке
Х/2 -стало в 1-й коробке
2(210-х) -стало во 2-й коробке
Х/2+2(210-х)=240
0,5х+420-2х=240
-1,5х=-180
Х=120 карандашей в 1-й коробке
210-120=90 карандашей во 2-й коробке
Объяснение:
Конечно же обе формулы дают ОДНИ И ТЕ ЖЕ решения. Просто запись в частном случае более лёгкая для восприятия.
Из этой формулы следует, что sinx=1 при х=П/2 , причём, если эту точку повернуть на один круг (+/-2П), два круга (+/-4П), три круга (+/-6П) и так далее, то придём в одну ту же точку В на тригонометрическом круге с декартовыми координатами (0,1) . Смотри рисунок. Поворачивать точку можно против часовой стрелки ( ) или по часовой стрелкe ( ) .
В случае общей формулы надо рассматривать чётные и нечётные значения .
Если k- чётно, то получаем
То есть получили ту же формулу, что и в частном случае.
Если k - нечётно, то получаем
На вид эта формула не похожа на частный случай, но точка х= -3П/2 получается из точки с дек. координатами А(1,0) путём её поворота на 270° (3П/2) по часовой стрелке (отрицательное направление поворота, поэтому знак (-) пишем ). И попадёт она в точку В(0,1). Но ведь мы попадём в точку В(0,1) и при повороте точки А(1,0) против часовой стрелки ( положительное направление поворота) на 90° (П/2) .
Поэтому запись равноценна записи .
Конечно, предпочтительнее сразу писать частный вид формулы для решения уравнения sinx=1, потому что он более простой в записи , но описывает те же решения, что и частный случай.