Из двух пунктов расстояние между которыми 80 км выехали одновременно навстречу друг другу два автомобиля. скорость первого на 20км/ч больше скорости второго. с какой скоростью ехал второй автомобиль, если они встретились через 3 часа.
решите эту с систем нелинейных уравнений с двумя переменными.
Пусть x - скорость первого автомобиля.
Тогда - x-10 - скорость второго автомобиля.
Зная, что первый автомобиль на 1 час проехал 300 км быстрей чем второй, составим и решим уравнение:
(300/x-10)-(300/x)=1
(300x-300x+3000)/(x^2-10x)=1
3000/(x^2-10x)=1
x^2-10x=3000
x^2-10x-3000=0
D=b^2-4ac
D=12100>0-2 корня.
x=(-b+√D)/2a
x=(10+110)/2
x=120/2
x=60
Второй корень я рассматривать не стану, т.к. он отрицателен, что не подходит по смыслу задачи.
Скорость второго автомобиля равна 60 -10=50 км/ч
ответ:Скорость первого автомобиля равна 60 км/ч, а скорость второго автомобиля равна 50 км/ч.
1.
а) (3y - 2)(3y + 2) = 9y² - 4
б) (3y - 1)² = 9y² - 6y + 1
в) (4a + 3k)(4a - 3k) = 16a² - 9k²
2.
(b-8)² - (64 - 6b) = b² - 16b + 64 - 64 + 6b = b² - 10b = b(b - 10)
3.
a) 25 - y² = (5 - y)(5 + y)
б) a² - 6ab + 9b² = a² - 2×1×3ab + (3b)² = (a - 3b)²
4.
36 - (6 - x)² = x(2,5 - x)
36 - (36 - 12x + x²) = 2,5x - x²
12x + x² = 2,5x - x²
2x² + 9,5x = 0
x(2x + 9,5) = 0
x = 0 или 2x = -9,5
x = 0 или x = -4,75
ответ: 0; -4,75
5.
а) (c² - 3a)(3a - c²) = -(3a - c²)(3a - c²) = -(3a-c²)²
б) (3x + x³)² = 9x² + 6x⁴ + x⁶
в) (3 - k)²(k+3)² = (3 - k)²(3+k)² = [(3-k)(3+k)]² = (9 - k²)²
6.
а) (3x - 2)² - (3x - 4)(4 + 3x) = 0
(3x - 2)² + (4 + 3x)² = 0
9x² - 12x + 4 + 16 + 24x + 9x² = 0
12x + 20 = 0
12x = -20
3x = -5
x = -5/3
б) 25y² - 64 = 0
y² = 64/25
y = ± 8/5
7.
а) 36a⁴ - 25a²b² = a²(36a² - 25b²) = a²(6a - 5b)(6a + 5b)
б) (x - 7)² - 81 = (x - 7 - 9)(x - 7 + 9) = (x - 16)(x + 2)