Из двух пунктов, расстояние между которыми равно 2400 км, навстречу друг другу выходят одновременно пассажирский и скорый поезда. каждый из них идет с постоянной скоростью, и в некоторый момент времени они
встречаются. если бы оба поезда шли со скоростью скорого поезда, то их встреча произошла бы на 3 часа раньше фактического момента встречи. если же оба поезда шли со скоростью пассажирского поезда, то их встреча
встреча произошла бы на 5 часов позже фактического момента встречи. найти скорости поездов.
Пусть скорость скорость скоростного x а скорость пассажирского y. И пусть время через которое они встретились z
Тогда имеем систему из трех равенств:
{z(x+y)=2400
{2x(z-3)=2400
{2y(z+5)=2400
Раскроем скобки:
{xz+yz=2400
{xz-3x=1200
{yz+5y=1200
Отнимем от первого второе и третье
xz+yz-xz+3x-yz-5y=0 => 3x=5y => x=5y/3
Подставим это значение x в двух выражениях
{xz-3x=1200
{yz+5y=1200
Получим:
{5yz/3-5y=1200
{yz+5y=1200
Первое равенсво умножим на 3 а второе на 5
{5yz-5y=3600
{5yz+25y=6000
Отнимем от второго первое
25y+15y=2400
40y=2400
y=60
Соответсвенно x=5y/3=300/3=100
Пусть скорость пассажирского поезда равна х км/ч, а скорость скорого поезда равна у км/ч, тогда за время Т до встречи они пройдут Тх и Ту км соответственно, что вместе составит 2400 км
Уравнение(1) Тх + Ту = 2400
или Т(х + у) = 2400
Если бы оба поезда шли со скоростью скорого , т.е. у км/ч, то время за которое они преодолели бы расстояние 2400км составило бы (Т-3)часов
Уравнение(2) 2у·(Т - 3) = 2400
Если бы оба поезда шли со скоростью пассажирского , т.е. х км/ч, то время за которое они преодолели бы расстояние 2400км составило бы (Т+ 5)часов
Уравнение(3) 2х·(Т + 5) = 2400
Из уравнения (1)
Т = 2400/(х + у)
подставим в (2) и (3)
2у·(2400/(х + у) - 3) = 2400 (2.1)
2х·(2400/(х + у) + 5) = 2400 (2.2)
решаем систему уравнений
4800у/(х + у) - 6у = 2400
4800х/(х + у) + 10х = 2400
4800у - 6у(х + у) = 2400(х + у)
4800х + 10х(х + у) = 2400(х + у)
4800у - 6ху - 6у² = 2400х + 2400у
4800х + 10ху +10х² = 2400х + 2400у
2400у - 2400х = 6у(х + у)
2400у - 2400х = 10х(х + у)
вычтем из верхнего уравнения нижнее
6у(х + у)- 10х(х + у)= 0
(х + у)(6у - 10х) = 0
х + у ≠ 0, тогда
6у - 10х = 0
6у = 10х
х = 0,6у
теперь подставим в 2400у - 2400х = 10х(х + у)
2400у - 2400·0,6у = 10·0,6у(0,6у + у)
2400·0,4у = 6у·1,6у
960у = 9,6у²
у = 100
х = 0,6у = 60
ответ: скорость пассажирского поезда 60км/ч, скорость скорого поезда 100км/ч