Из двух пунктов, расстояние между которыми составляет 140 км, навстречу друг другу по прямой должны выехать два велосипедиста, скорости которых постоянны. Если второй велосипедист выедет на 2,5 ч позже первого, то он встретит первого велосипедиста через 2,5 ч после начала своего движения. Если второй велосипедист выедет на 2 ч раньше первого, то он встретит первого велосипедиста через 4 ч после начала своего движения. Найдите скорость каждого велосипедиста.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
при n=1 у=|x-1| - наименьшее значение равно 0 при х=1
при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2]
при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2
при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4
при х∈[2;3]
при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6
при х=3
при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
Итак,
при четных n:
при n=2 y=|x-1|+|x-2| - наименьшее значение равно 1 при х∈[1;2]
при n=4 y=|x-1|+|x-2|+|x-3|+|x-4| - наименьшее значение равно 4 при х∈[2;3]
при n=6 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5|+|x-6| - наименьшее значение равно 9 при х∈[3;4]
...
при n=2k
y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при нечетных n:
при n=1 у=|x-1| - наименьшее значение равно 0 при х=1;
при n=3 y=|x-1|+|x-2|+|x-3| - наименьшее значение равно 2 при х=2
при n=5 y=|x-1|+|x-2|+|x-3|+|x-4|+|x-5| - наименьшее значение равно 6
при х=3
....
при n=2k-1 (нечетное число слагаемых)
y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
О т в е т.
при n=2k
y=|x-1|+|x-2|+|x-3|+...+|x-2k|- наименьшее значение равно k² при n∈[k;k+1]
при n=2k-1 (нечетное число слагаемых)
y=|x-1|+|x-2|+...+|x-(2k-1)| - наименьшее значение равно 2k при х=k
См. рисунки в приложении.