В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
koshe4ka556654
koshe4ka556654
09.12.2020 20:56 •  Алгебра

Из функции f (x)=x^3-9x; f (x)=x^4-x^2; f (x)=x^3+4 выберите нечетную найдите наибольший корень уравнения f (x)=0​

Показать ответ
Ответ:
сергей4995258
сергей4995258
04.06.2021 04:51
Метод матем индукции
1) проверим делимость на 3 при n=1
при n=1 4n^3+6n^2+5n+9=4+6+5+9=24 - делится на 3
2) предположим что делится на 3 при n=k
при n=к 4n^3+6n^2+5n+9=4k^3+6k^2+5k+9=(3k^3+6k^2+3k+9)+(k^3+2k) - делится на 3
значит (k^3+2k) - делится на 3, так как (3k^3+6k^2+3k+9) делится на 3
3) проверим делимость на 3 при n=k+1
при n=к+1
4n^3+6n^2+5n+9=4(к+1)^3+6(к+1)^2+5(к+1)+9=
=(3(к+1)^3+6(к+1)^2+3(к+1)+9)+((к+1)^3+2(к+1)) = A+B
A=(3(к+1)^3+6(к+1)^2+3(к+1)+9) - делится на 3
B=(к+1)^3+2(к+1)=k^3+3k^2+3k+1+2k+2=(k^3+2k)+(3k^2+3k+3) = C+D
C = (k^3+2k) - делится на 3 (см пункт 2) )
D = (3k^2+3k+3) - делится на 3
значит B=C+D - делится на 3
значит 4n^3+6n^2+5n+9 при n=k+1 делится на 3
так как n=k+1 4n^3+6n^2+5n+9 = A+B
<<< доказано методом математической индукции >>>>
0,0(0 оценок)
Ответ:
Makc457214
Makc457214
20.08.2020 17:16
1.
Lq(x² +x +8) <1 ⇔0 < x² +x +8 < 10 ⇔{ x² +x +8 > 0 ; x² +x +8 < 10 ⇔
 { x² +x +8 > 0 ; x² +x -2 < 0 ⇔ { x∈R ; (x +2)(x-1) < 0 ⇔ { x∈R ; x ∈(-2;1).⇒
 x ∈(-2;1). Два целых решения:  { -1 ; 0}.
---
* * * x² +x +8 =(x+1/2)² + 7 3/4  >0  || или D =1² -4*8 = -31< 0 ⇒x² +x +8> 0 || 
* * * x² +x -2 =0 ;  D=1² -4*1*(-2) =9 =3² .  x₁ = (-1-3)/2 = -2 ;x₂ = (-1+3)/2 =1.
* * *x² +x -2 = ( x-(-2))(x-1) =(x+2)(x-1).

2.
{х<5 ; log0.2 (x+2)>=log0.2 (x²-5x+9) .⇔{х<5 ; 0<x+2≤ x²-5x+9.⇔
{х<5 ; x+2>0  ; x ≤ x²-5x+9. ⇔{ х<5 ; x> -2  ; 0 ≤ x²-6x+9.⇔
{ -2<x<5 ;(x-3)² ≥0 ⇔ { -2<x<5 ;x∈(-∞;∞) .⇒x∈( -2; 5) .
сумма целых решения системы неравенств   (-1+ 0 +1+2+3+4) =9.

3.
log2 (3x-1)/(2-x)   < 1 .
Основание логарифма 2  > 1  ,поэтому:
⇔{ 3x-1)/(2-x) >0 ;3x-1)/(2-x)   < 2⇔{ 3(x-1/3)/(2-x) >0 ;(3x-1)/(2-x) -2 < 0.⇔
{ 3(x-1/3)/(x -2) <0 ;5(x-1)/(x-2)  > 0.⇔{ x∈(1/3;2)  ;x∈(-∞ ;-1)U(2 ;∞)  .⇒
x∈(1/3 ; 1).
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота