Из города А в город Б, расстояние между которыми 15 км, одновременно вышли. Скорость второго пешехода была на 2 км меньше скорости первого, поэтому он затратил на весь путь 2 часа больше. Какова скорость всех пешеходов?
1) При x≤-1 |1-x|=1-x, |x+1|=-x-1, y=1-x-x-1=-2x. На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2. Среди них целыми являются y=2; 3; 4. 2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2. На интервале (-1;1) y принимает одно значение - y=2. 3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x. На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6. Среди них целыми являются y=2; 3; 4; 5; 6.
Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6. Их сумма равна (2+6)/2*5=20.
Объяснение:
1. Запишите квадратное уравнение, у которого первый коэффициент равен -5, второй коэффициент равен 3. Свободный член равен нулю.
ax²+bx+c=0 - общий вид квадратного уравнения.
в нашем случае а=-5, b=3 с=0. Таким образом уравнение имеет вид:
-5x²+3x+0=0 и окончательно -5x²+x=0.
***
2. Запишите приведённое квадратное уравнение, у которого второй
коэффициент и свободный член равны -3.
Приведенное квадратное уравнение — это уравнение, где коэффициент, при одночлене высшей степени, равен единице.
То есть а=1. b=-3 и с =-3. Тогда уравнение принимает вид:
x²-3x-3=0.
***
3. Запишите неполное квадратное уравнение, у которого первый коэффициент равен -3, свободный член равен 5, и решите его.
a=-3: c=5. b =0;
-3x²+5=0;
-3x²=-5;
x²=5/3;
x=±√(5/3).
***
4. Запишите неполное квадратное уравнение, у которого первый коэффициент равен 5, второй коэффициент равен 7, и решите его.
a=5; b =7 c=0.
5x²+7x=0;
x(5x+7)=0;
Произведение равно нулю только тогда хотя бы один из множителей равен нулю:
x1=0;
---
5x+7=0;
5x=-7;
x=-7/5;
x2= - 1 2/5.
***
5. Решите уравнения:
1) х² = 6x;
x²-6x=0;
x(x-6)=0;
x1=0;
x-6=0;
x2=6.
***
2) х² + 7x - 3 = 7х +6; (+7х слева и +7х справа в сумме дают 0);
x²=9;
x1,2=±3.
***
3) 3х² + 9 = 12х +9; (+9 слева и +9 справа от знака равенства взаимно уничтожаются, так как в сумме дают 0);
3x²-12x=0;
3x(x-4)=0;
3x=0;
x1=0;
---
x-4=0;
x=4.
На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2.
Среди них целыми являются y=2; 3; 4.
2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2.
На интервале (-1;1) y принимает одно значение - y=2.
3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x.
На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6.
Среди них целыми являются y=2; 3; 4; 5; 6.
Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6.
Их сумма равна (2+6)/2*5=20.