Из города А в город В в 8 ч утра вышел автобус со скоростью 48 км/ч. Через полчаса его обогнал мотоциклист, ехавший со скоростью 60 км/ч. Мотоциклист прибыл в город В и через 12 минут после того выехал обратно. На расстоянии 12 км от города он встретил тот же автобус. Определите расстояние от А до В.
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2
Решить уравнение sin(π/2 + 2x) + √3cosx + 1 = 0
Укажите корни принадлежащие отрезку [-π ; π/2] .
sin(π/2 + 2x) + √3cosx + 1 = 0 ;
cos2x + √3cosx + 1 = 0 ;
2cos²x -1 + √3cosx + 1 = 0 ;
2cos²x+ √3cosx = 0 ;
2cosx(cosx + √3 /2 ) = 0 ;
a)
cosx = 0 ⇒ x₁ =π/2 +πn , n∈Z .
или
b)
cosx + √3 /2 =0 ;
cosx = - √3 /2 ⇒ x₂,₃ = ±( π -π/6) +2πn , n∈Z .
x₂ = -5π/6 +2πn , n ∈ Z ;
x₃= 5π/6 +2πn , n ∈ Z .
ответ1 : π/2 +πn , ±( π -π/6) +2πn , n∈Z .
из x₁ → - π/2 ;
из x₂ → - 5π/6 .
* * * из x₃ нет * * *
ответ2 : - π/2 ;- 5π/6 .