Из населённого пункта вышли одновременно два класса. Один класс направился на север, а другой — на восток. Спустя 4 ч. расстояние между ними было равно 24 км, причём первый класс на 4 км больше. С какой скоростью шёл каждый класс?
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы. Для построения прямой достаточно 2 точек. У=1/3х - 8/3 Пусть Х=0 тогда У=1/3*0 - 8/3= 8/3= -2 2/3 А(0;-2 2/3)
Пусть Х=2 тогда У=1/3*2-8/3= 2/3-2 2/3 = -2. В(2;-2) Через точки А и В проведи прямую
У=2/3х -10/3 Пусть Х =0 у= - 3 1/3 С(0; -3 1/3) Х= 1 У=2/3*1 - 3 1/3= - 2 /2/3 D(1; -2 2/3) Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
К1=1/3.
3у =2х -10.
У=2/3х -10/3. К2= 2/3
Графиками будут является прямые , к1 не равно к2 поэтому прямые пересекутся, координаты точки пересечения и будут решением системы.
Для построения прямой достаточно 2 точек.
У=1/3х - 8/3
Пусть Х=0 тогда
У=1/3*0 - 8/3= 8/3=
-2 2/3
А(0;-2 2/3)
Пусть Х=2 тогда
У=1/3*2-8/3= 2/3-2 2/3
= -2. В(2;-2)
Через точки А и В проведи прямую
У=2/3х -10/3
Пусть Х =0 у= - 3 1/3
С(0; -3 1/3)
Х= 1 У=2/3*1 - 3 1/3=
- 2 /2/3
D(1; -2 2/3)
Через точки С и D проведи прямую они пересекутся, из точки пересечения опусти перпендикуляры на оси Х и У это и будет решение.
(Прямые пересекутся в 4 четверти Х=2 у= -2)
1.
6sin^2x-3sinx*cosx-cos^2x=sin^2x+cos^2x
5sin^2x-3sinx*cosx-2cos^2x=0 /:cos^2x≠0
5tg^2x-3tgx-2=0
замена tgx=t
5t^2-3t-2=0
t=1
t=-2/5
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-2/5
x=-arctg(2/5)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(2/5)+pik, k∈Z
2.
5sin^2x+3sinx*cosx-2cos^2x=3sin^2x+3cos^2x
2sin^2x+3sinx*cosx-5cos^2x=0 /:cos^2x≠0
2tg^2x+3tgx-5=0
замена tgx=t
2t^2+3t-5=0
t=1
t=-5/2
обратная замена:
1) tgx=1
x=pi/4+pik, k∈Z
2) tgx=-5/2
x=-arctg(5/2)+pik, k∈Z
pi/4+pik, k∈Z
-arctg(5/2)+pik, k∈Z
Объяснение: