Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Объяснение:№2. 1) f(x)= 4/(x-1), функция имеет смысл, если х≠1; значит D(f)= (-∞;1)∪(1; +∞). 2)Найдём производную: f'(x)=-4/(x-1)² 3) x=1 критическая точка, т.к. производная в этой точке не имеет смысла; 4 ) f'(x)<0, если х∈ (-∞;1)∪(1; +∞). Значит на (1; +∞) функция у=f(x) убывает, чтд.
№3. f(x)= 3 - √(1-x²) 1) функция имеет смысл, если 1-x²≥0 ⇒ -1≤х≤1, т.е. D(f)= [-1;1]. 2) найдём производную функции f'(x)=-1/2√(1-x²) · (1-x²)' = 2x/2√(1-x²) = x/√(1-x²)
f'(x) = x/√(1-x²) 3)Найдём критические точки, решив уравнение f'(x) =0, ⇒ x/√(1-x²)=0 ⇒ x=0-критическая точка 4)Найдём знаки производной в окрестности критической точки на всей области определения:
на промежутке (-1;0), f'(x)<0; на (0; 1) , f'(x)>0 5) Так как при переходе через критическую точку х=0 производная меняет знак с минуса на плюс, то это точка минимума, f(0)=2 6) Найдём значения функции на концах промежутка D(f): f(±)=3
ответ: min f(x)=f(0)=2, max f(x)=f(±1)=3
№4. Если f(x) возрастающая функция, а g(x)=3-2x -убывающая, то f(g(x))- тоже убывающая.