В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Хорошист992017
Хорошист992017
29.12.2021 06:19 •  Алгебра

Из пункта А в пункт В расстояние между которыми 210 км вышел катер. дойдя до пункта В,он вернулся в пункт отправления, затратив на обратный путь на 4 часа меньше. Найдите собственную скорость катера, если скорость течения реки равна 3 км/ч. ответ дайте в км/ч.

Показать ответ
Ответ:
akbotawka02
akbotawka02
15.01.2022 18:01

1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1

Объяснение:

1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.

2.

1)

y(-x)=\frac{-x^5+x^4}{-x+1}

y(-x)\neq y(x)\\y(-x)\neq -y(x)

Это функция общего вида

2)

y(-x)=-x^7-3a^2

y(-x)\neq y(x)\\y(-x)\neq -y(x)

Это функция общего вида

3)

y(-x)=\sqrt{5-x} -\sqrt{5+x}

y(-x)\neq y(x)\\y(-x)\neq -y(x)

Это функция общего вида

3.

1)

f(-x)=f(x)

Значит

min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3

2)

f(-x)=-f(x)

Значит

min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3

4.

x^4-ax^2+a^2-2a-3=0

Это биквадратное уравнение. Делаем подстановку

y=x^2\\y^2-ay+(a^2-2a-3)=0

Уравнение будет иметь один корень, когда дискриминант равен 0

Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

a^2-2a-3=0\\D=(-2)^2-4\cdot1\cdot(-3)=4+12=16\\\sqrt{D}=4 \\a_1=\frac{-(-2)-4 }{2}=-1 \\a_2=\frac{-(-2)+4 }{2}=3

Делаем проверку:

1) а=-1

x^4+x^2+0=0\\x^2(x^2+1)=0

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)

2) а=3

x^4-3x^2+0=0\\x^2(x^2-3)=0

Здесь появляется второй корень. Значит, это значение не подходит.

Окончательно получаем решение: а=-1

0,0(0 оценок)
Ответ:
Sravkur
Sravkur
03.02.2020 06:56

x^4-9*x0

 

x*(x^3-9)0

 

Раскладываем вторую скобку по формуле разности кубов

 

x*(x-9^{\frac{1}{3}})*(x^2+9^{\frac{1}{3}}*x+9^{\frac{2}{3}})0

 

Заметим, что неполный квадрат в третьей скобке всегда положителен

 

Докажем это

 

x^2+9^{\frac{1}{3}}*x+9^{\frac{2}{3}}=0,25*x^2+9^{\frac{1}{3}}*x+9^{\frac{2}{3}}+0,75*x^2=

 

=0,25*x^2+2*9^{\frac{1}{3}}*0,5*x+9^{\frac{2}{3}}+0,75*x^2=

 

=(0,5*x+9^{\frac{1}{3}})^2+0,75*x^2\geqslant 0

 

Так как квадраты не могут быть отрицательными.

 

Значит можно рассмотреть неравенство методом интервалов.

 

1) При х<0 первый множитель будет меньше нуля, второй тоже меньше нуля. Два множителя меньше нуля дадут положительное число. А третий будет положительным. Значит все выражение в левой части будет положительным.

 

2) При x\in(0;9^{\frac{1}{3}}) Первый множитель будет больше нуля, второй меньше нуля, а третий как всегда положителен. Отрицательный множитель помноженный на положительные множители даст в итоге отрицательное число.

 

3) x9^{\frac{1}{3}}

 

Первый множитель будет положителен, второй тоже положителен. А третий как всегда положителен. Значит в итоге, перемножив три положительных числа, получим положительное число.

 

В ответе получим два промежутка из первого и третьего случаев.

 

x\in(-\infty;0)\cup(9^{\frac{1}{3}};\infty)

 

Заметно, что целочисленных решений будет бесконечно много. Это и все отрицательные целые числа и целые числа большие 2. Так как 2<9^\frac{1}{3}<3

 

Решений, так сказать, счетное множество.

 

Ну, а если бы был бы в неравенстве противоположный знак, то было бы всего два решения из второго случая. Это числа 1 и 2.

 


Сколько целочисленный решений имеет неравенство x в 4ой степени больше 9x
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота