Из пунктов а и в навстречу друг другу одновременно отправились пешеход и велосипедист. после встречи пешеход продолжал свой путь в в, а велосипедист доехал до а, повернул назад и тоже поехал в в. пешеход пришёл в b на 1 час позже велосипедиста. сколько времени до первой встречи, если известно, что скорость пешехода в 4 раза меньше скорости велосипедиста?
1 - расстояние АВ.
х - скорость пешехода
1/х - время пешехода на весь путь от А до В.
4х - скорость велосипедиста
Так как велосипедист проехал путь от А до В и обратно, то его расстояние равно 1 + 1 = 2, тогда
2/4х = 1/2х время велосипедиста на путь от А до В и обратно.
По условию время движения пешехода 1/х на 1 час больше времени движения велосипедиста 1/2х.
Составим уравнение:
1/х - 1/2х = 1
1 = 1· 2x
1 = 2x
х = 1 : 2
х = 1/2 = 0,5 - скорость пешехода
4 · 0,5 = 2 - скорость велосипедиста
2 + 0,5 = 2,5 - скорость сближения (т.е. расстояние, на которое они сближаются за 1 час)
А теперь всё расстояние 1 делим на скорость сближения 2,5 и получаем время до первой встречи
1 : 2,5 = 0,4 часа
0,4 часа = 60 мин : 10 · 4 = 24 мин
ответ: через 24 минут начала движения первая встреча.