Из пунктов а и в, расстояние между которыми равно 120 км, навстречу друг другу движутся два поезда. если первый поезд выйдет из а на 2 часа раньше, чем второй поезд выйдет из в, то они встретятся на середине пути. за какое время первый поезд проходит расстоянии от а до в, если через один час после встречи расстояние между равно 80 км?
Известно, что на половину пути (120 / 2 = 60 км) первый поезд затратил на 2 часа больше, чем второй, т.е. справедливо уравнение: \frac{60}{x}- \frac{60}{y} =2
После встречи поезда едут в разные стороны ровно 1 час и расстояние между ними становится 80 км, т.е. справедливо уравнение: x*1+y*1=80
Получаем систему уравнений:
\left \{ {{ \frac{60}{x} -\frac{60}{y}=2} \atop {x+y=80}} \right.
\left \{ {{ 60y-60x=2xy} \atop {y=80-x}} \right.
\left \{ {{ 30(80-x)-30x=x(80-x)} \atop {y=80-x}} \right.
Отдельно 1-е уравнение:
2400-30x-30x-80x+x^{2}=0
x^{2}-140x+2400=0
\frac{D}{4} =(-70)^{2}-2400=2500
x_{1} =70-50=20
x_{2} =70+50=120
y_{1} =80-20=60
y_{2} =80-120<0 не удовлетворяет усл. задачи, значит, и х = 120 нам не подходит.
Значит, скорость 1-го поезда = 20 км/ч и расстояние от А до В он пройдет за 120/20 = 6 часов.
ответ: 6 часов.