Из вершины прямоугольника со сторонами 5 см и 9 см восстановлен перпендикуляр длиной 12 см. найдите расстояние от конца этого перпендикуляра до противолежащих сторон прямоугольника. с чертежами.
Пусть AB=[0;170]. Тогда можно считать, что точки Фокса - все целые точки на этом отрезке, а k-ая точка Форда имеет координаты 170k/113, где k=0,1,2,...,112. Точку Форда можно записать в виде q+r/113, где q - частное, а r - остаток от деления 170k на 113. Т.к. расстояние между соседними точками Форда равно 170/113, что больше 1, то ближайшими к точкам Форда будут точки Фокса, и значит расстояние от k-ой точки Форда до соседней слева равно r/113, а до соседней справа (113-r)/113. Значит максимальное количество различных расстояний не больше, чем остатков от деления на 113, т.е. не более 113 штук.
Т.к. НОД(170,113)=1, то, когда k пробегает все числа от 0 до 112, остаток r от деления 170k на 113 пробегает те же числа, но в другом порядке, а значит все 113 возможных расстояний будут достигаться на каких-то соседних точках. ответ: 113.
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24
Т.к. НОД(170,113)=1, то, когда k пробегает все числа от 0 до 112, остаток r от деления 170k на 113 пробегает те же числа, но в другом порядке, а значит все 113 возможных расстояний будут достигаться на каких-то соседних точках. ответ: 113.