СтранноЮ простая ведь задача, для 1 класса, даже думать не нужно, всё известно.
Гляди
Пусть
v - скорость одного, тогда
(v+1) - скорость другого, ну и всё, скорости известны, расстояние известно, найдём время
36/v - время одного
36/(v+1) - время другого, и нам известно, что первое время на полчаса больше, значит
36/v - 36/(v+1) = 1/2
72*(v+1) -72*v = v*(v+1)
v^2 + v -72 = 0
v1=8 v1+1 = 9
v2=-9 v2+1 = -8
ответ Скорость одного была 8, а второго 9 км/ч
Замечание1 Я сразу написал решение квадратного уравнения, ведь у тебя, насколько я понял, возникли сложности с решением ЗАДАЧИ, а уравнения ты решать умеешь.
Замечание2 Я специально не отбросил второй, отрицательный корень, чтобы ты увидела, что уравнение гораздо умнее, чем можно было подумать, оно даёт 2 правильных одинаковых решения(знак - это направление скорости).
Но если уж слишком по-школьному, то отрицательное решение можешь и отбросить.
Замечание3 Я не использовал термины первый и второй, а использовал один и другой, это более обще, и, вообще говоря, они у меня "наоборот" к условию. А найти нужно скорости "каждого", а не конкретно "первого" и "второго".
Ну и просто так: А зачем практически летом решать задачи про лыжников? Про велосипедистов, ну или бегунов как-то своевременнее, что ли. :)
Точка пересечения графика функции с осью координат Y:
График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.
у =0³-3*0 = 0,
Результат: y=0. Точка: (0; 0.
Точки пересечения графика функции с осью координат X:
График функции пересекает ось X при y=0, значит, нам надо решить уравнение:
x³-3x = 0
Решаем это уравнение и его корни будут точками пересечения с X:
x (х²-3) = 0,
х1 = 0, х2,3 = +-√3.
Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).
Экстремумы функции:
Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y'=3x² – 3 = 0
Решаем это уравнение и его корни будут экстремумами:
3(х²-1) = 0,
х1 = 1, х2 = -1.
Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.
Интервалы возрастания и убывания функции:
Найдем значения производной между критическими точками:
x = -2 -1 0 1 2
y' = 9 0 -3 0 9.
• Минимум функции в точке: х = -1,
• Максимум функции в точке: х = 1.
• Возрастает на промежутках: (-∞; -1) U (1; ∞)
• Убывает на промежутке: (-1; 1)
Точки перегибов графика функции:
Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:
y'' = 6x = 0
Отсюда точка перегиба х = 0
Точка: (0; 0).
Интервалы выпуклости, вогнутости:
Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).
х = -1 0 1
y'' = -6 0 6.
Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.
• Вогнутая на промежутках: (0; ∞),
• Выпуклая на промежутках: (-∞; 0)
Вертикальные асимптоты – нет.
Горизонтальные асимптоты графика функции:
Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:
• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует
• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует
Наклонные асимптоты графика функции:
Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:
• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.
• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.
Четность и нечетность функции:
Проверим функцию - четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:
• (-x3)-3(-x) = -x3+3x нет,
• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.
СтранноЮ простая ведь задача, для 1 класса, даже думать не нужно, всё известно.
Гляди
Пусть
v - скорость одного, тогда
(v+1) - скорость другого, ну и всё, скорости известны, расстояние известно, найдём время
36/v - время одного
36/(v+1) - время другого, и нам известно, что первое время на полчаса больше, значит
36/v - 36/(v+1) = 1/2
72*(v+1) -72*v = v*(v+1)
v^2 + v -72 = 0
v1=8 v1+1 = 9
v2=-9 v2+1 = -8
ответ Скорость одного была 8, а второго 9 км/ч
Замечание1 Я сразу написал решение квадратного уравнения, ведь у тебя, насколько я понял, возникли сложности с решением ЗАДАЧИ, а уравнения ты решать умеешь.
Замечание2 Я специально не отбросил второй, отрицательный корень, чтобы ты увидела, что уравнение гораздо умнее, чем можно было подумать, оно даёт 2 правильных одинаковых решения(знак - это направление скорости).
Но если уж слишком по-школьному, то отрицательное решение можешь и отбросить.
Замечание3 Я не использовал термины первый и второй, а использовал один и другой, это более обще, и, вообще говоря, они у меня "наоборот" к условию. А найти нужно скорости "каждого", а не конкретно "первого" и "второго".
Ну и просто так: А зачем практически летом решать задачи про лыжников? Про велосипедистов, ну или бегунов как-то своевременнее, что ли. :)
Таблица точек
x y
-3.0 -18
-2.5 -8.1
-2.0 -2
-1.5 1.1
-1.0 2
-0.5 1.4
0 0
0.5 -1.4
1.0 -2
1.5 -1.1
2.0 2
2.5 8.1
3.0 18
Точка пересечения графика функции с осью координат Y:
График пересекает ось Y, когда x равняется 0: подставляем x=0 в x³-3x.
у =0³-3*0 = 0,
Результат: y=0. Точка: (0; 0.
Точки пересечения графика функции с осью координат X:
График функции пересекает ось X при y=0, значит, нам надо решить уравнение:
x³-3x = 0
Решаем это уравнение и его корни будут точками пересечения с X:
x (х²-3) = 0,
х1 = 0, х2,3 = +-√3.
Результат: y=0. Точки: (0; -√3), (0; 0) и (0; √3).
Экстремумы функции:
Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
y'=3x² – 3 = 0
Решаем это уравнение и его корни будут экстремумами:
3(х²-1) = 0,
х1 = 1, х2 = -1.
Результат: y’=0. Точки: (-1; 2) и (1; -2). Это критические точки.
Интервалы возрастания и убывания функции:
Найдем значения производной между критическими точками:
x = -2 -1 0 1 2
y' = 9 0 -3 0 9.
• Минимум функции в точке: х = -1,
• Максимум функции в точке: х = 1.
• Возрастает на промежутках: (-∞; -1) U (1; ∞)
• Убывает на промежутке: (-1; 1)
Точки перегибов графика функции:
Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:
y'' = 6x = 0
Отсюда точка перегиба х = 0
Точка: (0; 0).
Интервалы выпуклости, вогнутости:
Находим знаки второй производной на промежутках (-∞; 1) и (1; +∞).
х = -1 0 1
y'' = -6 0 6.
Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.
• Вогнутая на промежутках: (0; ∞),
• Выпуклая на промежутках: (-∞; 0)
Вертикальные асимптоты – нет.
Горизонтальные асимптоты графика функции:
Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:
• lim x3-3x, x->+∞ = ∞, значит, горизонтальной асимптоты справа не существует
• lim x3-3x, x->-∞ = -∞, значит, горизонтальной асимптоты слева не существует
Наклонные асимптоты графика функции:
Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:
• lim x3-3x/x, x->+oo = oo, значит, наклонной асимптоты справа не существует.
• lim x3-3x/x, x->-oo = oo, значит, наклонной асимптоты слева не существует.
Четность и нечетность функции:
Проверим функцию - четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:
• (-x3)-3(-x) = -x3+3x нет,
• (-x3)-3(-x) = -(x3-3x) – да, значит, функция является нечётной.