Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: , где - это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять . Нам известно, что , и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как , то . Положительное число должно быть больше нуля, и очевидно, что при . Поэтому подставляем наше первое значение: . При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше, .
Точно так же подставляем в .
По формуле приведения , поэтому:
А потому и является искомым периодом.
ответ: В)
Для решения запишем формулу бинома Ньютона:
Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение .
Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение .
Рассмотрим многочлен , где:
Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.
Для многочлена :
- степень определяется выражением , то есть степень равна 84
- свободный член равен
Для многочлена :
- степень определяется выражением , то есть степень равна 6
- свободный член равен
Наконец, для многочлена получим:
- степень определяется выражением , то есть степень равна 90
- свободный член равен
Сумма степени и свободного члена многочлена :
ответ: 98