1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
Задать вопрос
Войти
АнонимМатематика09 ноября 14:55
Решите систему уравнений методом алгебраического сложения 2x^2+3y^2=14. -x^2+2y^2=7
ответ или решение1
Харитонова Светлана
Решим заданную систему уравнений методом алгебраического сложения:
2х^2 + 3у^2 = 14;
-х^2 + 2у^2 = 7.
1. Умножим второе уравнение на 2:
2х^2 + 3у^2 = 14;
-2х^2 + 4у^2 = 14.
2. Выполним прибавление первого и второго уравнения:
2х^2 - 2х^2 + 3у^2 + 4у^2 = 14 + 14;
7у^2 = 28;
у^2 = 28 : 7;
у^2 = 4;
у1 = 2;
у2 = -2.
3. Подставим значение у в первое уравнение и найдем значение х:
2х^2 + 3 * 2^2 = 14;
2х^2 + 3 * 4 = 14;
2х^2 + 12 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 2 : 2;
х^2 = 1;
х1 = 1;
х2 = -1.
2х^2 + 3 * (-2)^2 = 14;
2х^2 = 14 - 12;
2х^2 = 2;
х^2 = 1;
х1 = 1;
х2 = -1.
F`(x)=3x²-6x-9
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²-6x-9=0
3·(x²-2x-3)=0
x²-2x-3=0
D=16
x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов
Обе точки принадлежат указанному промежутку
Не проверяя какая из них точка максимума, какая точка минимума, просто находим
F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее
F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее
F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2)
F`(x)=3x²+18x-24
Находим точки, в которых производная обращается в нуль.
F`(x)=0
3x²+18x+24=0
3·(x²+6x+8)=0
x²+6x+8=0
D=36-4·8=36-32=4
x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов
Обе точки не принадлежат указанному промежутку
F(0)=10 - наименьшее
F(3)=3³+9·3²-24·3+10=46 - наибольшее