Изобразите график непрерывной функции, зная что: а)область определения функции есть промежуток [-5;3] б)значения функции составляет промежуток [-4;2] в)производная функция на интервалах [-5;-3] и [-3;0] отрицательна, а на интервале [0;3] - положительна г) -3 - единственный нуль производной функции. Всё нужно расписать и составить график.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Объяснение:
В каком виде представлены выражения, в таком виде и будем решать:
(4ас^2)^3 •(0,5а^3 •с)^2=(2^2)^3 •(1/2)^2 •а^(3+3•2) •с^(2•3+2)=2^(2•3-2) •а^9 •с^8=2^4 •а^9 •с^8=16а^9 •с^8
(2/(3х^2 •у^3))^3 •(-9х^4)^2=8/3^3 •(-(3^2))^2 •х^(-2•3+4•2) •у^(-3•3)=8•3^(-3+2•2) •х^(-6+8) •у^(-9)=(8•3)/(х^2 •у^9)=24/(х^2 •у^9)
-(-х^2 •у^4)^4 •(6х^4 •у)^2=-36х^(2•4+4•2) •у^(4•4+2)=-36х^(8+8) •у^18=-36х^16 •у^18
(-10а^3 •b^2)^5 •(-0,2ab^2)^5=(-10)^5 •(-2/10)^5 •a^(3•5+5) •b^(2•5+2•5)=32•10^(5-5) •a^20 •b^(10+10)=32a^20 •b^20