Модуль означает, что знак числа попросту отбрасывается. Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком). 1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак. х-4=0 → х=4. 2. Рассматриваем случай х<4 При этом выражение отрицательно, следовательно |x-4| = 4-x -3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6) 3. Рассматриваем случай x≥4 При этом выражение неотрицательно, поэтому |x-4| = х-4 -3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x) 4. Объединяя два эти выражения, получаем
только с одним примером! Учи формулы квадратных уравнений ! Потом плавать не будешь ! 14х^2-9х=0 Это неполное квадратное уравнение, т.к. коэффициент "с" = 0. Здесь мы решаем по примеру в учебнике(там должны быть примеры решений!) х выносим за скобки : х(14х-9)=0. Здесь мы будем как обычно рассматривать по отдельности число "х" и число "(14х-9)". *Если бы было например, х(14х-9)=8(или другое число, не равное нулю),то уже придётся расскрывать скобки !И по отдельности уже рассматривать нельзя! Вернёмся к нашему получившемуся примеру х(14х-9)=0 1)х=0 2)14х-9=0 14х=9 х=9/14 Т.к. с этой дробью ничего нельзя сделать,то так и оставляем ! ответ:0, 9/14. Надеюсь всё понятно объяснила. Тоже начали только проходить эту тему.Если будут вопросы-пиши. Постараюсь
Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком).
1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак.
х-4=0 → х=4.
2. Рассматриваем случай х<4
При этом выражение отрицательно, следовательно |x-4| = 4-x
-3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6)
3. Рассматриваем случай x≥4
При этом выражение неотрицательно, поэтому |x-4| = х-4
-3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x)
4. Объединяя два эти выражения, получаем
Учи формулы квадратных уравнений ! Потом плавать не будешь !
14х^2-9х=0
Это неполное квадратное уравнение, т.к. коэффициент "с" = 0.
Здесь мы решаем по примеру в учебнике(там должны быть примеры решений!)
х выносим за скобки :
х(14х-9)=0.
Здесь мы будем как обычно рассматривать по отдельности число "х" и число "(14х-9)".
*Если бы было например, х(14х-9)=8(или другое число, не равное нулю),то уже придётся расскрывать скобки !И по отдельности уже рассматривать нельзя!
Вернёмся к нашему получившемуся примеру х(14х-9)=0
1)х=0
2)14х-9=0
14х=9
х=9/14
Т.к. с этой дробью ничего нельзя сделать,то так и оставляем !
ответ:0, 9/14.
Надеюсь всё понятно объяснила.
Тоже начали только проходить эту тему.Если будут вопросы-пиши. Постараюсь