sinx+sin
2
(x)+sin
3
(x)=cosx+cos
x+cos
x
(sinx-cosx)+(sin^{2}x-cos^{2}x)+(sin^{3}x-cos^{3}x)=0(sinx−cosx)+(sin
x−cos
x)+(sin
x)=0
(sinx-cosx)+(sinx-cosx)(sinx+cosx)+(sinx-cosx)(sin^{2}x+sinx*cosx+cos^{2}x)=0(sinx−cosx)+(sinx−cosx)(sinx+cosx)+(sinx−cosx)(sin
x+sinx∗cosx+cos
(sinx-cosx)(1+sinx+cosx+1+sinx*cosx)=0(sinx−cosx)(1+sinx+cosx+1+sinx∗cosx)=0
(sinx-cosx)(2+sinx+cosx+sinx*cosx)=0(sinx−cosx)(2+sinx+cosx+sinx∗cosx)=0
1) sinx=cosxsinx=cosx
tgx=1tgx=1
x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
2) 2+sinx+cosx+sinx*cosx=02+sinx+cosx+sinx∗cosx=0
(1+cosx)(1+sinx)=-1(1+cosx)(1+sinx)=−1 - решений нет, т.к.:
\left \{ {1+cosx \geq 0} \atop {1+sinx \geq 0}} \right.
Левая часть не может быть отрицательной не при каких х.
ответ: x= \frac{ \pi }{4} + \pi kx=
Объяснение:
.,,
Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.
sinx+sin
2
(x)+sin
3
(x)=cosx+cos
2
x+cos
3
x
(sinx-cosx)+(sin^{2}x-cos^{2}x)+(sin^{3}x-cos^{3}x)=0(sinx−cosx)+(sin
2
x−cos
2
x)+(sin
3
x−cos
3
x)=0
(sinx-cosx)+(sinx-cosx)(sinx+cosx)+(sinx-cosx)(sin^{2}x+sinx*cosx+cos^{2}x)=0(sinx−cosx)+(sinx−cosx)(sinx+cosx)+(sinx−cosx)(sin
2
x+sinx∗cosx+cos
2
x)=0
(sinx-cosx)(1+sinx+cosx+1+sinx*cosx)=0(sinx−cosx)(1+sinx+cosx+1+sinx∗cosx)=0
(sinx-cosx)(2+sinx+cosx+sinx*cosx)=0(sinx−cosx)(2+sinx+cosx+sinx∗cosx)=0
1) sinx=cosxsinx=cosx
tgx=1tgx=1
x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
2) 2+sinx+cosx+sinx*cosx=02+sinx+cosx+sinx∗cosx=0
(1+cosx)(1+sinx)=-1(1+cosx)(1+sinx)=−1 - решений нет, т.к.:
\left \{ {1+cosx \geq 0} \atop {1+sinx \geq 0}} \right.
Левая часть не может быть отрицательной не при каких х.
ответ: x= \frac{ \pi }{4} + \pi kx=
4
π
+πk , k∈Z
Объяснение:
.,,
Задать вопрос
Войти
АнонимГеометрия13 мая 17:10
треугольник MNP равнобедренный. один из углов равен 112 градусам. найти углы
ответ или решение1
Боброва Кира
Рассмотрим два возможный случая.
1 случай.
Данный угол величиной 112° является углом при вершине данного равнобедренного треугольника.
Тогда два других угла при основании будут равны между собой.
Обозначим через x величину этих углов.
Так как при сложении величин всех трех углов всякого треугольника в результате получается 180°, можем составить следующее уравнение:
х + х + 112 = 180,
решая которое, получаем:
2х + 112 = 180;
(2х + 112) / 2 = 180 / 2;
х + 56 = 90;
х = 90 - 56 = 34°.
2 случай.
Данный угол величиной 112° является углом при основании данного равнобедренного треугольника.
Тогда другой угол при основании также должен составлять 112°.
Так как суммы этих двух углов, равная 112 + 112 = 224° больше 180°, то такого треугольника не существует.
ответ: 112°, 54°, 54°.