Изучить обратимость следующих функций и найти обратные к ним. В случае отсутствия обратимости на свей области определения выделить области обратимости и найти соответствующие обратные функции. 1) x/x+1 2) x²+x 3) x-1/x 4) x/x²+1
Пусть скорость течения реки - х км/ч Вверх по реке - это значит плывет против течения... S=6 км проплыл сначала. Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час = = 5,4 км/час Время после отправления из N это t=4 часа 30 минут= 4,5 ч Составим уравнение 6 / (5,4-х) + 6 / х = 4,5 6х + 6* (5,4-х) = 4,5х* (5,4-х) 324 + 45x^2 - 243x = 0 5x^2 - 27 + 36 = 0 полное квадратное уравнение. D = 27² - 4* 5* 36 = 729-720=9 x1 = (27-3) /10 = 2,4 км/ч x2 = 3 км/час Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
Вверх по реке - это значит плывет против течения...
S=6 км проплыл сначала.
Скорость лодки в стоячей воде 90 м/мин = (90*60) /1000 км/час =
= 5,4 км/час
Время после отправления из N это t=4 часа 30 минут= 4,5 ч
Составим уравнение
6 / (5,4-х) + 6 / х = 4,5
6х + 6* (5,4-х) = 4,5х* (5,4-х)
324 + 45x^2 - 243x = 0
5x^2 - 27 + 36 = 0 полное квадратное уравнение.
D = 27² - 4* 5* 36 = 729-720=9
x1 = (27-3) /10 = 2,4 км/ч
x2 = 3 км/час
Задача имеет 2 решения х=2,4 км/ч и х=3 км/ч
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума